P M

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

USE OF STATECHART ASSERTIONS FOR MODELING
HUMAN-IN-THE-LOOP SECURITY ANALYSIS AND
DECISION-MAKING PROCESSES

by
Michael A. Schumann
June 2012

Dissertation Supervisor: James Bret Michael

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) WashingtonDC20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE

June 2012

3. REPORT TYPE AND DATES COVERED

Dissertation

4. TITLE AND SUBTITLE: Use of Statechart Assertions for Modeling Human-in-
the-Loop Security Analysis and Decision-Making Processes

5. FUNDING NUMBERS

6. AUTHOR: CDR Michael Schumann

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES: The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U.S. Government. IRB Protocol number N/A
12a. DISTRIBUTION / AVAILABILITY STATEMENT: 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited A

13. ABSTRACT (maximum 200 words):

Processes are a fundamental component of most activities undertaken by humans. In software engineering and
information assurance, in particular, it is important that processes be understandable, documented, and repeatable
so as to ensure that the process outcomes are consistent and predictable. This dissertation provides a novel
approach to process creation, documentation, checking, and maintenance that applies mathematical formalism to
the engineering of processes that rely in large measure on human decision-making to advance the process flow.
However, the modeling approach is sufficiently general for application to any process. This dissertation advances
the state-of-the-art in software engineering by providing a formal computer-assisted end-to-end way to conduct
requirements engineering. This dissertation advances the state-of-the-art in information assurance by developing a
systematic approach that makes the creation of security processes precise and uses formal methods to allow
upfront validation and runtime verification of modeled processes. This dissertation demonstrates the modeling
approach through a case study of the Unified Cross Domain Management Office’s Cross Domain Solution
Workflow process.

14. SUBJECT TERMS: Software Engineering, Information Assurance, Process Modeling, Statechart
Assertions, Formal Methods, Certification and Accreditation

15. NUMBER OF
PAGES
160

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified uu

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited.

USE OF STATECHART ASSERTIONS FOR MODELING HUMAN-IN-THE-
LOOP SECURITY ANALYSIS AND DECISION-MAKING PROCESSES

Michael A. Schumann
Commander, United States Navy
B.A., Washington State University, 1991
M.S., Naval Postgraduate School, 2002

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN SOFTWARE ENGINEERING
from the
NAVAL POSTGRADUATE SCHOOL
June 2012

Author:

Michael A. Schumann

Approved by:

James Bret Michael Dan C. Boger
Professor of Computer Science Professor and Chair of
Dissertation Supervisor Information Sciences
George Dinolt Doron Drusinsky
Professor of Practice Associate Professor of

Computer Science

Duminda Wijesekera
Professor of Computer Science,
George Mason University

Approved by:

Peter J. Denning, Professor & Chair, Department of Computer Science

Approved by:

Douglas Moses, Associate Provost for Academic Affairs

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

Processes are a fundamental component of most activities undertaken by humans. In
software engineering and information assurance, in particular, it is important that
processes be understandable, documented, and repeatable so as to ensure that the process
outcomes are consistent and predictable. This dissertation provides a novel approach to
process creation, documentation, checking, and maintenance that applies mathematical
formalism to the engineering of processes that rely in large measure on human decision-
making to advance the process flow. However, the modeling approach is sufficiently
general for application to any process. This dissertation advances the state-of-the-art in
software engineering by providing a formal computer-assisted end-to-end way to conduct
requirements engineering. This dissertation advances the state-of-the-art in information
assurance by developing a systematic approach that makes the creation of security
processes precise and uses formal methods to allow upfront validation and runtime
verification of modeled processes. This dissertation demonstrates the modeling approach
through a case study of the Unified Cross Domain Management Office’s Cross Domain

Solution Workflow process.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUGCTION. ..ottt sttt sttt e stesbesressearenneas 1

A. STATEMENT OF THE PROBLEMccccooiiiiiiii 1

B. SIGNIFICANCE OF THE PROBLEM.......cccociiiiiiieecce e 5

C. RESEARCH HYPOTHESIS AND APPROACHcccciiiiiiien, 12

1. Research HYpOthesSiS.........coveiiiiiieice e 12

2. Research ApProach.........cccoeeeviiiieiicc e 12

D. CONTRIBUTIONS OF THIS RESEARCHcccvoiiiiiiiee e 13

1. Software ENGINEEIINGcccveiiiiiiiee e 13

2. Process-modeling ENQINEEriNg.......ccccoovvviieiiniieneene e 13

3. CaSE STUIESeeiieiie et ns 14

4, Real-world IMpPact ... 14

E. THESIS ORGANIZATION ..ottt 14

RELATED RESEARCH ...ttt 15

A. INTRODUCTION. ..ottt 15

B. FORMAL METHODS IN PROCESS MODELING........cccccocvivniiiniinnn, 15

C. SOFTWARE SAFETY ..ottt 21

D. STATECHARTS ...t enes 22

E. REQUIREMENTS ...ttt 24

F. RESEARCH GAPS. ...t 25

THE MODELING APPROACH ...t 27

A FORMAL METHODS TOOLS AND TECHNIQUES.c.ccoovivnnnenn. 27
1. Desirable Attributes of Formal Methods to Support the

Modeling APProach ..o 27

2. Assessment of Formal Methods for Desirable Attributes.............. 28

B. PROCEDURE ..ottt sttt 32

1. ITErative DESIGNocveiiecece e 34

2. TermMINOIOQY......uiiiiiiiieeie e 35

a. TRFRAUS ... 36

b TrANSITIONS...c.eiiiiiie e 37

c DeCISION POINTS........oiieiieie e e 38

d Process REQUITEMENTSccouovirieiieiieie e 39

e I L0 o USRS 40

f COMPIEXILY ..o 40

g. (IS | Vo USSR 41

h. Yot T o o BRSO 45

C. MODELING APPROACH ..ottt 45

1. Process SEIECTIONcoouiiiiiieeee e 45

2. ProCESS ANAIYSISveivieiieie ettt e et sra e 45

3. Construct Process Model............ccooeiiiiicniieee e 47

a. Iterative Validationccccceveeviiie i 48

4, Construct Statechart ASSErtions.........c.ccoccevieienieienne e 49

a. Statechart ASSEITIONS........coveveiiieiiee e 49

Vi

b. Validating Statechart ASSertions...........ccccceevvevvvieeiieeresieennnns 51

5. Embed Assertions in Process Modelccooooieiiiiiiieniiciies 52

6. V&V Process Model........cccoveiiiiiieiicc s 55

a. Validationc.ooiiiie e 56

b. Verification — Manual TeStingccccevvivevvernciee e 56

C. Verification — Runtime Execution Monitoring..........ccc.cce..... 58

D. STATEROVER MODELING TOOL....cccooiiiiiiiiiininieiee s 60
1. AddINg .Jar FIES ..o 61

2. Setting up the White-box Test Generator...........c.ccccoeevevveivervcnenne. 61

3. JUNIt Testing Framework ... 62

IV, CASE STUDIES.ottt bbb 65
A CROSS DOMAIN IMPLEMENTATION PROCESScccooveviiiiiinns 66
1. Process SEIECTIONcouv i 66

2. ProCeSS ANAIYSISoiuieiiiieiiiee e 67

a. TRFRAUS ... 69

b. DeCISION POINTS......ooiiiiiiiiiee e 69

C. LAYEIS ittt 70

3. Construct Process Model............ccooiiiiiiiniieec e 71

4. Construct Statechart ASSErtions...........cccccevvereiieseese e 81

a. Validating Statechart ASSErtionscccocevveieeieenesiieseennens 83

5. Embed Assertions in Process Modelccccocevveviviiiiieneciciienne 84

6. V&V Process MOEl..........cooviiiiiiiiiieieccceee e 85

a. Validationcccoeiiiiiiiece e 85

b. Verification — Manual TeStingccccvvvvieeniiiniieiese e 86

C. Verification — Runtime Execution Monitoring............c.c....... 88

B. CROSS DOMAIN SOLUTION WORKFLOW PROCESS.........cccceevnin. 92
1. Process SEIECHIONccvviiiieiie e 92

2. ProCesS ANAIYSISccveiieiiiiicie sttt 92

a. TRFEAGSc.eveevie et 94

b. DeCISION POINTS........cciiiieiicic e 99

C. LAYEIS .. 100

3. Construct Process Model...........cococeiiieeiicic i 100

4. Construct Statechart assertions..........ccccovvvevieresieseere e 110

5. Embed Assertions in Process Modelcccccovviieiiccccicceeen, 112

6. V&V Process MOUEL........ccccooveiiiiiicii e 115

a. Validationcooviieiicceee e 115

b. Verification — Manual Testingccccoovreieniiiniinininiens 116

C. Verification — Runtime Execution Monitoring.................... 120

C. KEY LESSONS LEARNEDcccovoiiieeee e 122
1. Code GENEIALIONcveciiecie e 122

2. Source Material...........ccveiiiiiiece e 122

V. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK........ 125
A. CONCLUSIONS ..ottt 125
1. Software ENGINEEIiNGccccoiiiiiiece et 125

2. Process-modeling ENgGINEering..........ccocvvveiinieiiienenc e 125

3. CaSE STUIES.....ecuveiieie et et 127

4. Real-world Impact ..o 127

B. RECOMMENDATIONS FOR FUTURE WORK........cccocoviiiiiiiieiene 127

1. Improving Workflows for Surgical Procedures.............ccccccevenen. 128

2. Runtime Execution Monitoring — Long-term Approach 130

3 Full-scale Employment of Embedded Assertions.............cccceev..... 131

4 Validation Using External ASSErtions..........cccoceveeieneeneeniesenee 131

5. Additional Modeling Tool Capabilities.............cccocveveiieiivereiinne. 131

LIST OF REFERENCES ..ottt sttt ne e 133
INITIAL DISTRIBUTION LIST .ottt 139

THIS PAGE INTENTIONALLY LEFT BLANK

Figure 1.
Figure 2 .
Figure 3.
Figure 4 .
Figure 5.
Figure 6 .
Figure 7 .
Figure 8 .
Figure 9.

Figure 10 .
Figure 11 .
Figure 12..
Figure 13.
Figure 14 .
Figure 15 .
Figure 16 .
Figure 17 .
Figure 18 .
Figure 19.
Figure 20 .
Figure 21 .
Figure 22..
Figure 23 ..
Figure 24 .
Figure 25 ..
Figure 26 .
Figure 27 .
Figure 28 .
Figure 29 .
Figure 30 .
Figure 31..
Figure 32.
Figure 33.
Figure 34..
Figure 35.
Figure 36 .
Figure 37 ..
Figure 38 .
Figure 39.
Figure 40 .
Figure 41 .
Figure 42 .
Figure 43 ..

LIST OF FIGURES

ICD 503 FramMEWOIKccuveiiiiiiiieiiisieseeeeie et 3
A Continuous V&V Process (From Michael et al. 2011)........cccccevveiininneennns 5
Proposed System ArChItECIUIE.........ccviveiiere e 6
Access Restricted Based on Authorized Access Level of User..........c.ccocvveeeee 7
Conceptual View of CDS WOrkflow ProCess.........cccocveveiiieiveiesiesesesieesiens 13
Overview of Statechart-Based Process Modeling Approach..........ccccoceveenene 33
Cross Domain Implementation Process (CDIP)ccccovvvvveiveiesieseee s 34
StateRover Model Of CDIPccooii e 35
Example of Threads in "Op_Monitor” Sub-Process.........cccoceververesivesnenenn. 36
Transition Using an “Off-Page Reference” Artifact...........cccoocevvnieiencinne. 37
Decision Point EXamPIe........ccovoeiiii e 38
Applying Temporal Constraints and ReStraints...........cccoocevvereeniiieneenennnn 40
Top-level Statechart Model of CDS Workflow Process.........cccoceeveviveneiennne. 41
Sub-process Titled “Initiate_ CDSR”cccooiiiiiiiie e 42
Sub-process Titled “Op/MONITOI"ceoiv i 43
Decomposing a Complex Hierarchical Process Modelccccoooevieiiiennnns 44
Top-level Statechart Model of CDS Workflow Process.........cccocvevevivervneenne. 47
StateRover Automated Validationcccooeiieiiiiniieieeeee e 48
Example of an Statechart ASSErtioN..........ccccecvevierieriesieereese e 50
Timeline Diagram for “obvious success” Assertion Test Scenario 52
Timeline Diagram for “obvious failure” Assertion Test Scenario................... 52
Statechart Assertion Scoped by Substatechart Requestor_Initiate 54
Manually Generated Test Case Used in CDIP Verificationccccveneee. 57
White-box Test Generator Code SNIPPeL.......ccccveiirieiiieienie e 59
Adding Necessary .jar Files to Java Build Path...........c.c.cccccoovveviiienienncne, 61
Statechart Properties and WTG Parameters..........ccccoveevereenenieseenesie e 62
Cross Domain Implementation Process Informal Diagram..........c.ccccoeeevennine 67
CDIP Step 1 “Authorize REQUESL”coiiiieiieie e 68
Top-Level View of Final CDIP Process Model (Right Half)cccee.... 72
Top-Level View of Final CDIP Process Model (Left Half)ccccooeveneene. 73
CDIP Steps 0 - 3 Top-level View During Model Development...................... 75
Step 3—Community_Approval_Via CDRBcccccoviiiiiiiininiieneeenees 76
CDIP Top-level Development of Steps 4, 5, and 6/7cccccevevvveviveiesieennnns 77
Step 5 — Certification TEStcccvoiiiie e 78
Step 6/7 — Implement and Perform Site Security Testing.........ccccccovvveveiivennns 79
Step 8 — Accreditation DECISIONc.coveieriiiieie e 80
CDIP Top-level View Steps 9, 10.......ccoeiviiieiieiiiie e se s 81
Statechart Assertion for Requirement RLcccooviiiiinieniiie e 82
Statechart Assertion for RequIirement R2cccoecvvvveieiiiese e 83
Timeline Diagram for “obvious success” Assertion Test Scenario 83
Steps_0_1 with Embedded Statechart ASSErtion...........cccceeevvvevesiveieeresieennnns 84
Step 9—Operate_and_Monitor — with Embedded Assertionc..ccveeee. 85
Manual Testing Example — Failed ASSErtion.........cccceeveviveveiienneie e 87

Xl

Figure 44 .
Figure 45 .
Figure 46 .
Figure 47 .
Figure 48 .
Figure 49 .
Figure 50 .
Figure 51 .
Figure 52..
Figure 53 ..
Figure 54 .
Figure 55 .
Figure 56 .
Figure 57 .
Figure 58 .
Figure 59 .
Figure 60 .
Figure 61 .
Figure 62 .
Figure 63 .
Figure 64 .
Figure 65 .
Figure 66 .
Figure 67 .
Figure 68 .
Figure 69 .
Figure 70 .
Figure 71.
Figure 72 .
Figure 73.
Figure 74 .

Manual Testing Example — Successful ASSertion...........ccccoeceevveiieeiieiiecinnns 88

CDIP Test Results EXample L.......ccocoeiieieiieiiece e 89
CDIP Test Results EXamPle 2.........ooiiieiiiieieece e 90
Graphic Feedback for CDIP Test Results Example 2..........ccccooevvvviviveieiiennne 91
CDS Use Case DIAQIaMSccveiueeiiaieiieeniesiesieesie e siessaessessiesessresssesseessessneas 93
Activity Diagram for Sub-Process Titled “Initiate Reqest”........cccccevvevvrnenne. 94
Initiate Request ACtIVItY DIagramcccevueiieiieniinie e e 95
Review Request ACtivity DIagramcccooveveiiieiierniie e 96
Process CDS Request ACtiVity DIagram.........cccccceveerenienieenesieeseeniesee e 97
Implement CDS Request Activity Diagramcccveveveeieiiienineie e 98
Top-level Statechart Model of CDS Workflow Process.........cccccvevveiiieeninnne 101
CDS Workflow Top-level View During Model Development...................... 103
INITIATE _COAISE .. ittt ettt sb e saeeae s 104
REVIEW _REQUESTvevieiece ettt sna e ns 105
PrOCESS _COAISE ...ttt sttt e et e sbe e et nan e 107
IMPIEMENT_COAISEeeveeeieciiecie ettt te e e e nae s 109
OPMON_COBISE ...ttt ettt be et e s e e sbeeaae e e reesane e 110
Statechart Assertion for Requirement R1cccccovvvievveie s 111
Statechart Assertion for Requirement R2cccovviiienienieneee e 111
Statechart Assertion for Requirement R3ccccovvvieiieie e 112
State Requestor_Initiate with Embedded ASSertionc.cccevveivveeiveinnnn, 113
State Assess_Request with Embedded Statechart Assertion.............ccccen..... 114
State Op_Monitor with Embedded Statechart Assertion.............cccevvevunene. 115
Successful Manual Test of CheckImpactLevelsAssertion..........c.cccccevvvennene. 117
Assertion ChecklmpactLevelsAssertion Successful Test Run..........c.cve...... 117
Failed Manual Test of ChecklmpactLevelSASSertion...........cccccvevververeseene. 118
Assertion ChecklmpactLevelsAssertion Failed Test Runcccccceeeeviennne 119
WTG Output fOr 50-TESE RUNeiiiiiieieieie s 121
Statechart-Based Formal Modeling Approach............cccccveveiieinevc e s, 126
Example Surgical Procedure Workflow (From Yu et al. 2011)c....... 129
Time-out Point Enforceable Architecture (From Yu et al. 2011).................. 130

Xii

Table 1.

Table 2 .

Table 3.
Table 4 .
Table 5.
Table 6 .
Table 7.

LIST OF TABLES

Potential Impact Definitions for Security Objectives (From National

Institute of Standards and Technology 2004)cccooeriiieniienenie e 10
Desirable Attributes of a Formal Language for Process Modeling

APPIOACN ... e 29
Example Decision POINt TraCKingc.cccevvereiiieniene e see e 39
Runtime Execution Monitoring Data Collectioncccoceveiiiieiiniennenn 60
CDIP DECISION POINES ...ttt 70
Runtime Execution Monitoring Data Collectioncccoceveiieieiiniennnnn 91
CDS Workflow DeciSion POINESccviiiiiiiieiesicse e 99

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

LIST OF ACRONYMS AND ABBREVIATIONS

BPM Business Process Model

BPMN Business Process Modeling Notation
C&A Certification and Accreditation

CDIP Cross Domain Implementation Process
CDS Cross domain Solution

CNSS Committee on National Security Systems
CNSSI Committee on National Security Systems Instruction
DAL Data Abstraction Layer

DCI Director of Central Intelligence

DCID Director of Central Intelligence Directive
DIL Data Interface Layer

DNI Director of National Intelligence

DOD Department of Defense

DODI Department of Defense Instruction

DSM Design Structure Matrix

HCP Human Collaboration Processes

HP/A Human Processes and Artifact

HSPD Homeland Security Presidential Directive
1A Information Assurance

ICD Intelligence Community Directive

IDE Integrated Development Environment
MDA Maritime Domain Awareness

MLAS Multi-Layer Access Solution

MLS Multi-Level Security

MSPCC Maritime Security Policy Coordinating Committee
NGO Non-Governmental Organization

NPD New Product Development

NPS Naval Postgraduate School

NSMS National Strategy for Maritime Security

XV

NSPD
ODNI
PRC
R&D
SA
SOA
SLANG
SPADE
TDSS
TOS
TPM
TSA
UCDMO
UN
V&V
WFM
WMD
WTG
YAWL

National Security Presidential Directive
Office of the Director of National Intelligence
Peoples Republic of China

Research and Development

Situational Awareness

Service Oriented Architecture

SPADE Language

Software Process Analysis, Design, Enactment
Trusted Data Sharing Solution©

Trusted Operating System

Time-out Point Manager

Traditional Structured Analysis

Unified Cross Domain Management Office
United Nations

Validation and Verification

Workflow Management

Weapons of Mass Destruction

White-box Test Generator

Yet Another Workflow Language

XVi

ACKNOWLEDGMENTS

This project would not have been possible without the support and assistance of
numerous individuals. | sincerely appreciate the help, guidance, and counseling toward
this accomplishment.

First, I would like to thank CAPT Kathryn M. Hobbs, USN, Ret. and CAPT
Janice Wynn, USN, Ret. both of who made it possible for me to continue in the Software
Engineering doctoral program and extend my graduation date in order to accommodate a
transition to sea duty.

I would like to thank VADM David Buss and RDML Terry Kraft for the many
discussions on operational art, deep thinking, command and control in a denied/degraded
environment, and Information Operations; all of which fomented security related thought
that improved the dissertation.

I would like to thank CAPT Steve Parode, my current commanding officer for his
support to complete my dissertation and the funding to support dissertation related travel.

Next, 1 would like to acknowledge the members of my dissertation committee:
Professors Michael, Boger, Dinolt, Drusinsky, and Wijesekara. They tirelessly gave of
their time and energy to guide my research efforts, clarify my understanding of complex
materials, and provide suggestions that substantively improved the dissertation.
Additionally, thank you to Professor Man-Tak Shing who, even though he was not on my
committee read and provided valuable feedback on my dissertation. Professor Michael,
as my dissertation advisor and supervisor and before that my Master’s thesis advisor in
2002, provided the unwavering support, mentorship, and guidance that | needed in order
to complete the research.

Finally, I wish to thank my girlfriend Anna and my children, Ashley and Nicholas
for their patience, love, and support throughout this long journey.

Xvii

THIS PAGE INTENTIONALLY LEFT BLANK

Xviii

l. INTRODUCTION

A. STATEMENT OF THE PROBLEM

Processes are a fundamental component of most activities undertaken by humans.
According to Webster’s New Universal Unabridged Dictionary, a process is “a particular
method of doing something, generally involving a number of steps or operations”
(Webster and Mckechnie 1983). In software engineering and information assurance, in
particular, it is important that processes be understandable, documented, and repeatable
S0 as to ensure that the process outcomes are consistent and predictable. The ability to
formally represent and reason about human-based decision-making processes is a

prerequisite for implementing these processes in information systems.

Our research presents a novel approach to process creation, documentation,
checking, and maintenance. Our statechart assertion-based approach applies
mathematical formalism to the engineering of processes. We focus on human-based
processes, that is, processes that rely in large measure on human decision-making to
advance the process flow; however, this modeling approach is sufficiently general for

application to any process.

Our approach utilizes statechart-based formal process modeling as well as the use
of embedded statechart assertions to ensure that modeled process adheres to stated
requirements, thus providing traceabilityl between the process requirements and the
process implementation. The formal nature of our approach can also help the process
engineer to reason about the process. We apply formal methods-based tools and
techniques in our approach. As Monin points out, formal methods provide us with a
precise and unambiguous means of specifying and reasoning about the behavior of
systems (Monin and Hinchey 2003). Formal methods are most frequently used in the
software engineering of highly automated security- and safety-critical systems. However,

our research demonstrates the use of formal methods to specify and reason about

1 We apply the IEEE 610.12-1990 definition of traceability stated as, “The degree to which each
element in a software development product establishes its reason for existing; for example, the degree to
which each element in a bubble chart references the requirement it satisfies.”

1

primarily human-based processes, such as the process used by the U.S. government to
implement, certify, and accredit cross domain solutions (CDS). This process is titled the

CDS Workflow and serves as a demonstrative exemplar of our modeling approach.

The intent of our approach is to impart a high degree of precision to our
understanding of the process, as well as to provide an automated means of validating that
the process does what we expect it to do. In addition, our approach provides for runtime
monitoring of the process in execution. Runtime monitoring is useful for both validation
which is about answering the question, “Is our formal specification of the natural
language description of the process correct?” as well as verification which is about
answering the question, “Have we correctly implemented the process?” Runtime
monitoring is possible because one of the artifacts produced by our modeling approach is
an executable representation of the process. In essence, runtime monitoring uses an
executable version of the process and assertions about the process to evaluate input
scenarios and classify them as good or bad (Drusinsky 2006).

We apply a particular technical solution, the TimeRover statechart-based
modeling tool, to our exemplar process in order to demonstrate the technical feasibility of

the approach.

Not all processes require a fine-grain level of modeling, high level of fidelity, or
formal specification. For example, Netflix, Incorporated describes a process of rapid
recovery from problems that directs employees to “just fix problems quickly” (Anon.).
The philosophy behind this is that the company resides in a creative-inventive market
where fixing problems is cheaper than preventing them vice a safety- or security-critical
market where preventing problems is cheaper than fixing them (Hall 2005). The
company goes on to describe the difference between “good” and “bad” processes. The
“good” processes tend to be loosely defined (e.g., website push every two weeks rather

than random) and would likely not benefit from the use of formal methods.

In a number of arenas there is a need to seamlessly share and integrate
information from multiple security domains via a ubiquitous sharing and arbitration

mechanism—in systems that perform this function are defined as cross domain solutions

2

(Committee on National Security Systems 2006). At the same time, we must have the
evidence necessary to ensure the prevention of inadvertent disclosure of sensitive or
classified information. Prior to September 2008 the U.S. government had an established
process for the certification and accreditation2 (C&A) of high-assurance systems as
delineated in Director of Central Intelligence Directive (DCID) 6/3 Policy, “Protecting
Sensitive Compartmented Information within Information Systems” (Committee on
National Security Systems 2006). The entire C&A process was reviewed and revised as
delineated in the Intelligence Community Directive (ICD) 503, “Information Technology
Systems Security Risk Management, Certification and Accreditation” and the associated
documents within the ICD 503 Framework (see Figure 1) (Director of National
Intelligence 2008).

1CD 503
Information Technology Systems Security Risk Management, Ceification and Accreditation]

Ly CHSSP 22 1

I iy 1

ICS 2008-503-01 \ S L])
Interconnection Security Agreements ’

CHNSS1 4009 1

' LA Glmim !

IC Standard
Standards supporting IT System Security — |j—————) T T T T T T T T e T T T T T T TTTTTTTT *
Risk M. 1, and CEA — 7 HIST SP 800-53 y !
Security Controla for Federal Information Systems

B Iﬂ ______________________ ¥
Allied | Commaonmwealih : CNSSI 1253 1
1 Security Categorization and Controls Selection for NSS!

R

L NIST 5P 800-53A]
i Guide for Assessing the Security Controls

ARG cwssizsaa 3
e s H_I ;1__;;;0_'};} _________ '___\' 1 Guide to Assessing Security Contrals for NSS :
L HISTSPBEIOIT 00 1 1 N maaanmime e m s
L lying the RMF to Inf fion Systema Ssewity ¢ 3232909093932 0 | 020 poesssssssssssmsesssmEmssossmssSossSsss .
e R S A it : i NIST SP §00-30 i
e B B B DB S AT AR B S P D AL, . |~Riak Assesament Guide for Information Technology Systems ,'.
. NIST SP 800-19 — R T R e
: Integrated Enterprise-wide Risk Management ! :’ CNSSI 1230 o
— i Guide for Conducting Risk Assessments -

.......................................

Figure 1. 1CD 503 Framework

2 Where applicable, definitions for information assurance related terms will be as specified in the
Committee on National Security Systems Instruction No. 4009, National Information Assurance Glossary.
Accordingly, certification refers to the comprehensive evaluation of security safeguards to support the
accreditation process. Accreditation is the formal declaration that an information system is approved by a
designated authority to operate at an acceptable level of risk.

3

The 1ICD 503 C&A process is embedded within the CDS Workflow process
described above. We must be able to understand and ensure the rigorous application of
the ICD 503 C&A process for high-assurance systems. In doing so, we help build the
evidence necessary for operating these systems at the highest levels of assurance.
Currently, there is no rigorously defined mathematical model of the C&A process. Our
modeling approach provides a means of building such a mathematically rigorous model.
The ICD 503 C&A process is the product of a series of transitional working groups to
reformulate and unify the U.S. Department of Defense (DoD) and Intelligence
Community (IC) C&A processes. The intent was to develop a single, federated process
applicable to high-assurance information systems throughout the federal government.
These working groups primarily consisted of domain experts in fields related to high-
assurance systems, such as: system certifiers and accreditors, high-assurance system
vendors, and DOD and IC chief information officers. The working groups used a
combination of domain knowledge, tribal knowledge, best practices, and input from
government information assurance (1A) and C&A communities, to develop the process
(Niles 2002). While this method can be an effective way of developing processes, in the
domain of high-assurance system certification and accreditation, it is not enough. As
Gabbar pointed out, formal representation provides a systematic framework to construct
and validate the syntax of the underlying system towards building standard representation
approaches (Gabbar 2006, 23). Michael et al. show us that (see Figure 2) we can
translate customer requirements to formal specification then employ validation and
verification (V&V) throughout the development process in order to ensure that the model

satisfies stakeholder expectations (Michael et al. 2011).

Specification
Customer

Requirements

\Emf__;/ ~_

Validation process

Development

Verification

Lower-level
specification

Development

Verification

Product

___ brocess -~ Mx___urmm_f/

Figure 2. A Continuous V&YV Process (From Michael et al. 2011)

We have analyzed the CDS Workflow process in terms of our modeling approach
and used the approach to develop a formal process model. We do so using formal
methods tools and techniques such as those described in (Drusinsky 2006; Gabbar 2006;
Monin and Hinchey 2003). The resultant model provides the level of formality necessary

for rigorously applying the exemplar process.

B. SIGNIFICANCE OF THE PROBLEM

The significance of the problem is clear. In order to understand fully a series of
activities conducing to an end, especially when that end directly relates to the level of
trust we place in high assurance systems, we must be able to rigorously articulate the
process, consistently predict the process outcomes, and enforces requirements on the
process. In this section, we discuss the importance of formally modeling the CDS

Workflow exemplar process as a means of demonstrating the significance of the problem.

In order to implement, certify, and accredit systems for operation at the highest
levels of assurance, we need to be able to both understand and trust in the process
through which we implement, certify, and accredit those systems. Ultimately, our work
in defining a formal model of the CDS Workflow process helps build the evidence
necessary to certify and accredit high-assurance CDS systems. However, a well-defined,
validated, and documented process is only enough to guarantee safety. The reification

(i.e., mapping) from the formal model to the implementation is also needed to guarantee

security properties. In other words, validation and verification (V&V) of the process is a
necessary but not sufficient condition for obtaining a trusted system.

The Maritime Domain Awareness (MDA) research group at the Naval
Postgraduate School (NPS) has partnered with numerous defense research and
development (R & D) organizations to develop a prototype system (see Figure 3) called
Radiant Alloy that is capable of fusing data from multiple security domains into a

comprehensive picture of the Maritime Domain.

2
- o

0 | |

Alpplicatidn
n

Clients Application Server Data Sources

Java

Applications !

i)

v

h Legacy
= Apps

—
@]

1B Web
Gul

Users and data sources never directly
connected

o

5
L

Figure 3. Proposed System Architecture

In the prototype system, data sources and clients may reside within any of the
possible security domains (e.g., UNCLASS, SECRET, TOP SECRET). Therefore, in
order to prevent the inadvertent disclosure of classified data (i.e., information leakage),
the application server depicted in Figure 3 must prevent the unintended transfer of data
between security domains. At the same time, it must allow authorized down/upgrading
and transference of data in order to supply those on the client-side with the most
comprehensive MDA situational awareness (SA) picture available based on the client’s
level of access as demonstrated in Figure 4 below. In addition, there must be a means for

providing anonymity to the suppliers of the data contained in the repositories.

Trusted Operating System

uonesjddy

£

£

=
Application

Multilevel Database

Coalition User U.S. Service User
(Cleared Secret-REL and balow) (Cleared Top Secrat and below)

Figure 4. Access Restricted Based on Authorized Access Level of User

Systems such as Radiant Alloy are critical to the future of MDA. The United
States and its allies and other groups requiring access to MDA information at a variety of
levels need a fully developed, easily accessible, comprehensive picture of the maritime
domain. For example: the struggle against military and terrorist forces bent on attacking
and destroying U.S. and allied forces, combating the illicit worldwide movement of
human cargo (e.g., the slave trade and illegal immigration), and investigation and
prevention of narcotics trafficking. In order to realize this vision, information from all
security domains must be accessible on an as-needed basis to those that require it and
only within authorized security domains. For example, in a scenario involving tracking
and interdiction of a cargo ship suspected of carrying concealed weapons of mass
destruction (WMD) or WMD components, numerous organizations participate in the
effort. These roles have different security levels and data requirements; yet, in order to
work together they must be able to share data. This effort would include numerous
participants such as: port security guards enforcing entry point access controls, Coast
Guard harbor patrol personnel in a law enforcement capacity, watch officers at one of the
Coast Guard Regional Fusion Centers that deconflict and manage inbound shipping, ship-
refueling operators that routinely collect and analyze data on inbound shipping fuel
levels, maritime patrol aircraft that contribute to maritime situational awareness, Naval
carrier strike groups which routinely analyze the operating patterns of underway vessels,
the U.S. State Department which understands normalized flow of trade between

countries, non-governmental organizations (NGOs) that may have unique insights and

7

access to activity at ports of debarkation worldwide, and any other organization that may
be able to contribute to the tracking and interdiction of the target vessel.

The governance of high-assurance systems C&A has transitioned to a series of
publications that fall within a proposed framework for ICD 503 shown in Figure 1. 1CD
503 is a result of a shift in responsibility for the C&A of high-assurance systems from the
Director of Central Intelligence (DCI) to the Director of National Intelligence (DNI).
The Unified Cross Domain Management Office (UCDMO), under the auspices of the
DNI, is responsible for creating, publishing, and maintaining ICD 503. The intent of ICD
503 is to combine current paths to C&A into a unified federal government-wide process.
This is a major shift from today’s C&A environment where the process of C&A is
dependent on the domain in which a system operates. Furthermore, C&A via one system
does not transfer or correlate to C&A via another. For example, the Department of
Defense uses DoD Instruction (DODI) 8500.2 to govern the C&A of information systems
whereas the Intelligence Community (IC) uses DCID 6/3. A cross domain solution fully
certified under DODI 8500.2 would still need to go through the DCID 6/3 C&A process
in order to be certified for use within the IC. Under the rubric of ICD 503, a single C&A

process will be used for all federal information systems.

The ICD 503 framework establishes the authorities and structure for protecting
national intelligence information and information systems, whether classified or
unclassified (Director of National Intelligence 2008). The Committee on National
Security Systems Instruction (CNSSI) 4009 provides a common lexicon for discussing
information assurance and national security systems (Committee on National Security
Systems 2006).

CNSSI 1199, a product of the U.S. Committee on National Security Systems,
provides a means of categorizing U.S. national security systems in terms of the potential

impact of unauthorized disclosure of the information residing on the system. As shown

in Table 1, this categorization is broken down into three security objectives:
Confidentiality, Integrity, and Availability. Each of these is assessed in terms of
information related to that security objective and the potential impact of its unauthorized

disclosure.

Table 1.

Standards and Technology 2004)

Potential Impact Definitions for Security Objectives (From National Institute of

Potential Impact

Security Objective

Low

Moderate

High

Confidentiality
Preserving author-
ized restrictions on
information access
and disclosure, in-
cluding means for
protecting personal
privacy and proprie-
tary information.
[44U.S.C. SEC. §
3542]

The unauthorized dis-
closure of information
could be expected to
have a limited adverse
effect on organiza-
tional operations, or-
ganizational assets,
individuals, other or-
ganizations, or the
national security inter-
ests of the United
States.

The unauthorized dis-
closure of information
could be expected to
have a serious adverse
effect on organiza-
tional operations, or-
ganizational assets,
individuals, other or-
ganizations, or the
national security inter-
ests of the United
States.

The unauthorized dis-
closure of information
could be expected to
have a severe or cata-
strophic adverse effect
on organizational op-
erations, organizational
assets, individuals,
other organizations, or
the national security
interests of the United
States.

Integrity
Guarding against
improper infor-
mation modification
or destruction and
includes ensuring
information non-
repudiation and au-
thenticity.

[44 U.S.C.,§ SEC.
3542]

The unauthorized
modification or de-
struction of infor-
mation could be ex-
pected to have a lim-
ited adverse effect on
organizational opera-
tions, organizational
assets, individuals,
other organizations, or
the national security
interests of the United
States.

The unauthorized
modification or de-
struction of infor-
mation could be ex-
pected to have a seri-
ous adverse effect on
organizational opera-
tions, organizational
assets, individuals,
other organizations, or
the national security
interests of the United
States.

The unauthorized mod-
ification or destruction
of information could
be expected to have a
severe or catastrophic
adverse effect on or-
ganizational opera-
tions, organizational
assets, individuals,
other organizations, or
the national security
interests of the United
States.

Availability
Ensuring timely and
reliable access to
and use of infor-
mation.

[44 U.S.C., 8 SEC.
3542]

The disruption of ac-
cess to or use of in-
formation or an infor-
mation system could
be expected to have a
limited adverse effect
on organizational op-
erations, organization-
al assets, individuals,
other organizations, or
the national security
interests of the United
States.

The disruption of ac-
cess to or use of in-
formation or an infor-
mation system could
be expected to have a
serious adverse effect
on organizational op-
erations, organization-
al assets, individuals,
other organizations, or
the national security
interests of the United
States.

The disruption of ac-
cess to or use of in-
formation or an infor-
mation system could
be expected to have a
severe or catastrophic
adverse effect on or-
ganizational opera-
tions, organizational
assets, individuals,
other organizations, or
the national security
interests of the United
States.

10

A security category is based on the potential impact of unauthorized disclosure of
information residing on the system. The security category is determined by the following
equation:

Security Category of information type = {(Confidentiality, impact),

(Integrity, impact), (Availability, impact)}, where the acceptable values for

potential impact are LOW, MODERATE, or HIGH as described in Table 1

(National Institute of Standards and Technology 2004).

If a U.S. system contains information at different impact levels, the highest
impact level is used when determining the security category. The U.S. government has
adopted security labels based on a set of definitions for security objectives. These are
distinct from internationally developed and recognized definitions such as those
contained in the Common Criteria for Information Technology Security Evaluation. For
example, the CDS described earlier in this document is designed to interface with
security domains from UNCLASSIFIED all the way up to TOP SECRET as shown in
Figure 4. Traditionally, information labeled TOP SECRET and above is given the
highest levels of protection as unauthorized disclosure of this information has a HIGH
potential impact on national security. Therefore, the security category of this system
would be (Confidentiality, H), (Integrity, H), (Availability, H). Within the ICD 503
Framework this would be referred to as an ICD 503 H-H-H security category.

The successful culmination of our research provides a formalized, statechart-
based approach to human-based process modeling. We demonstrate this approach using
the largely human-based Cross Domain Implementation Process (CDIP) and CDS
Workflow process as exemplars. Through formal methods tools and techniques, we show
that it is possible to rigorously define, monitor in execution, maintain, and enforce
requirements on these processes. A benefit of this approach is continuous monitoring of
the process if we implement a runtime model of the process with assertions. We further

show that our modeling approach is generalizable to any process.

11

C. RESEARCH HYPOTHESIS AND APPROACH
1. Research Hypothesis

We can extend the use of statechart assertions through the application of a process
modeling approach, where:

e The approach provides a systematic, formal methods-based procedure for
precise development, debugging, runtime monitoring, long-term
maintenance, and upfront validation and verification of decision-making
processes.

e Integrated statechart assertions serve as a requirements enforcement
mechanism on the modeled process.

We test our hypothesis vis-a-vis the application of the modeling approach to the

CDIP and its successor the CDS Workflow process.

2. Research Approach

Using formal methods tools and techniques, we develop a systematic approach to
process-modeling engineering. This approach provides us with a systematic, repeatable
basis for engineering, understanding, and assessing the security properties of processes
developed with the modeling approach. Formal models are a useful tool for helping us
understand and clearly describe a system or process in unambiguous language. Our
modeling approach allows assertions to be exercised and visualized via animation. This
can be used as a communication tool for discussing the process and system with decision
makers, process owners, management, and other stakeholders.

The nature of the largely human-based CDIP and CDS Workflow process is such
that it involves subjective and objective sub-processes. By subjective, we mean
processes that involve elements of human evaluation. For example, evaluating the
effectiveness of an authentication mechanism is a subjective process where the
evaluator’s experience, knowledge, personal bias, and definition of the word
“effectiveness” can affect the process outcome. By objective, we mean processes that are
repeatable, measurable, well structured, and produce predictable outputs for a given set of
inputs. For example, evaluating the strength of passwords is an objective process

definable in terms of the computing power and time necessary to crack the passwords
12

successfully. Figure 5 represents the CDS Workflow process as a composition of these
subjective and objective sub-processes. As part of our research, we break the CDIP and
CDS Workflow down into its subjective and objective component parts. We then use
formal methods techniques to model the objective sub-processes in a well-defined formal

language.

CDS Workflow Process

S = subjective process
O = objective process

Figure 5. Conceptual View of CDS Workflow Process

As Monin points out, when a formal model is available, we can state with
precision the properties we expect from the system (i.e., the system’s behavior) and then
formally verify them (Monin and Hinchey 2003, 4). Our approach to modeling provides
for precisely stating the properties we expect from the objective components of the CDS
Workflow process. We assess the technical feasibility of our modeling approach in terms
of its real-world applicability and provide us with a test case on a process being

developed for managing and implementing CDS.

D. CONTRIBUTIONS OF THIS RESEARCH
1. Software Engineering

We contributed to software engineering by introducing a novel way for software
to automate a new domain, that being process-modeling engineering of high-level,
human-based processes.

2. Process-modeling Engineering

We developed a systematic approach to formally modeling, validating and
verifying high-level human-based processes. Modeling human-based processes can be
13

challenging to model because of the hard-to-capture elements such as human decision-
making, sequencing, and concurrent activities. We applied some of the tools and
techniques from software engineering to provide an end-to-end means of modeling,

validating, and verifying these processes within the same formalism.

3. Case Studies

We demonstrated the application of our systematic modeling approach through
two case studies. These two cases represent hard process modeling problems and

encompass a large portion of the hard-to-capture elements mentioned above.

4. Real-world Impact

We provided feedback to the UCDMO on process errors discovered through the
case studies, resulting in corresponding changes to the real-world process for requesting,
developing, implementing, certifying and accrediting cross domain solutions.

E. THESIS ORGANIZATION

In Chapter Il we assess and discuss relevant literature. In Chapters I1l and IV we
describe and exposit the modeling approach and provide usage examples. In particular,
Chapter 111 provides a detailed description of the modeling approach and its applications
while Chapter 1V applies the modeling approach to two particular processes. The final

chapter (Chapter V) provides conclusions and a view into future research.

14

II. RELATED RESEARCH

A. INTRODUCTION

There is a long history of research on the modeling of software and security
processes, such as those for development, maintenance, and in particular for V&V and
C&A of software and information systems. For example, the First International
Conference on the Software Process held in Redondo Beach, CA in 1991. At this
conference, many papers were presented on the topic of formally modeling software
engineering processes. This conference was primarily focused on high-level processes
such as those by which software is developed as opposed to low-level processes such as
those managed by an operating system (e.g., memory or file management). Subsequent
to the conference, the field of formal process modeling continued to evolve not only for
software engineering processes but also for business processes. Researchers in both
fields experimented with a wide variety of tools and techniques in the effort to find ways
to formally specify, validate, and verify high-level software development and business

processes.

Additionally, a significant body of research exists on the development of
executable process models from formal specifications. However, a gap exists in the open
literature with regard to conducting runtime verification of the executable process
models. Our work addresses this need by providing a systematic process modeling
approach that includes runtime verification of the executable process model via

embedded statechart assertions.

B. FORMAL METHODS IN PROCESS MODELING

Gruhn and Emmerich introduced a software process modeling language called
FUNSOFT nets. These are essentially Petri nets with a formally defined semantics in
terms of Predicate/Transition (Pr/T) nets and extended by multi-sets (Emmerich and
Gruhn 1991). Gruhn describes software process modeling as focusing on software
process models that can be used for governing software processes with the intent of

automatically detecting incongruities between a software process and its associated
15

model. Executable software process models, according to Gruhn, contribute to increased
software development productivity and software quality. The underlying Pr/T net
contains a multiplicity of features that facilitate the specification and governance of the
modeled software processes. These features include the following: a set of jobs
representing software development activity; a set of object type definitions that can be
attached to channels via a specified function in order to specify the allowable type for a
particular channel; a set of predicates to define conditions on the objects; and an initial
marking that respects the typing of channels. Gruhn extended the discussion of
FUNSOFT nets to encompass social processes represented by software development
teams (V. Gruhn 1992). He points out that the incorporation of human social interactions
into software process models represents an area of research that is not well understood
though he does suggest that the dialogue artifacts inherit in FUNSOFT nets may provide
a means of describing these interactions in the context of software processes (Emmerich
and Gruhn 1991). Gruhn concludes that the non-linear factors involved in human social
interactions prevent the modeler from doing more than pointing out explicitly where

human interaction and cooperation impacts software development.

Hibdon and Hartrum examine the development of an organizational process
model based on object-oriented design concepts and formal software engineering
methods. They apply a sequential design process that builds an informal Rumbaugh
model, translates it to a Z based specification, and finally translates the Z specification
into the Refine language and builds an executable model via the Software Refinery
Environment (Hibdon and Hartrum 1996). The translation of Z to Refine requires special
attention with regard to Z predicate constraints since Refine does not support Predicate
constraints that must always hold true. Constraints of this type must be mapped into pre-
and post-conditions of Refine functions. In our modeling approach, the statechart-based
model and the embedded assertions are designed with the same modeling techniques in

the same formalized language.

An experimental application of process modeling technology at the British
Airways showed that there is value in using flexible modeling tools as the modeling

process can reveal flaws and inconsistencies in the original process. If this results in a
16

change to the original process, the model needs to be changeable to reflect the
adjustments (Emmerich et al. 1996). Our modeling approach addresses this issue by
using a modeling tool that is flexible enough to apply rapid changes yet continues to

ensure that the model maintains consistency with the underlying formal semantic.

Business process models have become increasingly complex, making it steadily
more difficult to implement the models within an information system. Koehler et al.
suggest a dichotomy exists between the tools and methods used to describe a business
process and the tools and methods used to describe the information technology (IT)
artifacts implementing the process. They make the case that process requirements should
be made explicit and demonstrate the use of basic model checking techniques to verify a
model’s global properties of reachability and liveness. These terms are defined as
follows: the reachability property states a particular situation can sometimes be reached
whereas a liveness property expresses that, under certain conditions, a situation will
ultimately occur (Koehler, Tirenni, and Kumaran 2002). Here, the term *“global
properties” refers to those properties that apply to the entire model. While verification of
these properties is useful in terms of a basic understanding of how the model behaves
during enactment, they do not provide insight or enforcement for properties within the
context of the model. In other words, these properties are agnostic to the contents of the
model. Our research addresses the need for contextual verification of a model’s internal

properties through the runtime application of embedded statechart assertions.

Van Dongen, Van Der Alst, and Verbeek as well as Van Dongen and Jansen-
Vullers show that process-aware information systems are used to support a wide range of
business processes. Often, these systems are configured based on a process model which
drives the need to ensure that the process model is correct. Therefore, many researchers
have investigated the verification of process definitions with a focus on the construction
of mathematically sound and executable syntax and semantics of specific modeling
languages. In spite of the importance of having a correct process model the authors
indicate that for many process-modeling techniques, mathematically well-defined syntax
and semantics do not exist or they are too complex for process designers. In order to

demonstrate the value of modeling techniques based on a well-defined language, the
17

authors use the Event-driven Process Chains (EPC) modeling language to describe their
approach for verification of EPCs. Then, through a series of reductions, they translate the
EPC to a form of the classic Petri net model known as Place/Transition nets which
consist of two modeling elements. Their stated goal is to provide the process designer
with a tool to find possible problems in a process specification. To that end, they require
the process designer to interactively evaluate the EPC and Place/Transition model at two
different points in the verification process in order to make decisions about the behaviors
exhibited by the model. (Van Dongen, Van Der Aalst, and Verbeek 2005; Van Dongen
and Jansen-Vullers 2005) This approach leads to what the authors describe as a relaxed
definition of correctness that focuses on giving the process designer the ability to
determine whether, according to his personal standards for the process resulting in

desirable versus undesirable behaviors, a process under examination is correct.

As pointed out by Gruhn and Lane, the building of business process models
(BPM) can benefit from well-established practices in software engineering (V. Gruhn and
Laue 2007). The focus and main contribution of their research is a discussion of the
value of style checking in improving the quality of BPM. The authors suggest that
significantly improving the quality of BPMs related to software development using style
rules and style checking leads to an improvement in the quality and success of enterprise

software development.

Business Process Modeling Notation (BPMN) is an emerging standard that allows
business processes to be captured in a standardized format. BPMN lacks formal
semantics which leaves many of its features open to interpretation and hinders
verification of processes described in BPMN. Ye et al. proposed a methodology for
mapping a subset of BPMN elements to the Yet Another Workflow Language (YAWL)
specification language formal, set-notation based definitions. (Ye et al. 2008) The
authors developed a tool for automated translation of a BPMN model to a YAWL net.
While this tool required preprocessing and did encounter translation errors it provided an
initial step toward the type of formalization required for BPMN model verification.
However, it also highlights the challenges of taking a model developed in a language

lacking formal semantics and translating that model to a sufficiently formal language to
18

allow verification. Our modeling approach addresses this gap by allowing the process
engineer to both design and verify process models within the same formal specification

language.

Grady offered a universal architecture description framework (UADF) and
showed how this combination of UML and SysML can be applied to modern day
problem spaces to provide organized methods for identification of specialty
engineering/quality, environmental requirements, product entities, and the map between
models and product entities borrowed from Traditional Structured Analysis (TSA)
(Grady 2009). He points out the difficulty in connecting a design with the verification
process through which we prove that a design satisfies its driving requirements. Our
work in applying statechart-based assertions to the modeling of processes addresses this
by modeling requirements in the same statechart-based notation as the modeled process
and embedding those assertions within the modeled process so that they can be enforced

at runtime.

The integration of human interactions into process modeling can be challenging
due to the unpredictable nature of human behavior. It is important to find ways to
formally specify human interactions within a process in order to facilitate process
validation and verification. Zongyang, Liyang, and Hongli propose a formalization of
human interactions within business processes through the introduction of the Human
Processes and Artifact (HP/A) model. This model applies rigorous, set notation-based
definitions to human processes combined with statechart visual representations of the
human interactions within a business process. However, the authors identify a gap in the
verification of models that incorporate human interactions due to ability of humans to
make unpredictable choices (Zongyan, Liyang, and Hongli 2010). Our work contributes
to closing this gap in human-based model verification by integrating the representation of
human choices within the process models designed through our modeling approach. As a
result, requirements or constraints on human choices can be modeled and enforced at
runtime using statechart embedded assertions within an executable model. This
facilitates runtime verification of models that integrate the representation of human

choices.
19

Hurtado Alegria, Bastarrica, and Bergel point out that the software process
models can be sophisticated and large. The formal specification of these models
demands an enormous effort and once specified, the process engineer lacks tools to
evaluate the quality of the process. They demonstrate the Analysis and Visualization for
Software Process Assessment (AVISPA) tool for analyzing and identifying errors within
software process models as an a priori way to measure the quality of the process prior to
execution. The authors point out that formal V&YV techniques for measuring and testing
discrepancies between a model and its execution can only be carried out on a process
model that has been implemented, tailored, and enacted (Hurtado Alegria, Bastarrica, and
Bergel 2010; Hurtado Alegria, Bastarrica, and Bergel 2011). Our process modeling
approach addresses this concern by providing the process engineer with an iterative
approach to process design that integrates V&V throughout and includes the development

of an executable representation of the process model.

Karniel and Reich identified a gap between the process planning and process
implementation communities. They indicate that many new product development (NPD)
projects fail. The design structure matrix (DSM) can be used for planning and modeling
the process flow of NPD projects. However, DSM lacks the formality necessary to verify
correctness of the process model. The authors suggest a relationship between the NPD
project failures and inability to verify the DSM model of the project. They propose a
complex series of formal rules to translate a DSM model to a workflow net. Workflow
nets are a class of Petri nets with the necessary formalisms and tools to conduct process
verification. The authors point out that their approach is difficult to implement for more
complex DSM models. (Karniel and Reich) Our work addresses this gap by providing a
visual modeling language that is accessible to both the process planning and
implementation communities yet includes the necessary formality and tools to enable

V&YV of the modeled process.

Human interactions are an integral component of business processes. However,
as Stuit points out, Human Collaboration Processes (HCP) are either ignored or not
handled well by current process modeling approaches. He argues that there is a demand

for novel modeling tools for the design and modeling of HCPs in organizations. Stuit
20

demonstrates an agent-based, graphical approach to modeling human interactions that
serves as a “necessary precursor for their proper analysis and improvement” (Stuit 2011,
3-5). Our research addresses the modeling of human-in-the-loop decision-making
through the artifacts of our statechart based process modeling approach. We apply and
enforce runtime constraints on decision-making through the use of statechart embedded

assertions.

C. SOFTWARE SAFETY

Bishop provides an introduction to the concepts of information leakage and safety
in information systems. These terms are used rather than secure and unsecure because
safety refers to the abstract model and security refers to the actual implementation
(Bishop 2002, 47-91):

Definition 3-1. When a generic right r is added to an element of the

access control matrix not already containing r, that right is said to be
leaked.

Definition 3-2. If a system can never leak the right r, the system
(including the initial state sp) is called safe with respect to the right r. If
the system can leak the right r (enter an unauthorized state), it is called
unsafe with respect to the right r.

The access control matrix model is fundamental to both of these concepts. Access
control matrices, originally proposed by Lampson were enhanced by Graham and
Denning and are applied to modern day systems by Bishop (Lampson 1974; Denning
1971; Graham and Denning 1972; Bishop 2002). An access control matrix views a
system in terms of the set of protected entities, contained in the set of objects O its active
objects, contained in the set of subjects S; and rights drawn from the set of rights R in
each entry a[s,0] where S€ S, 00, and a[s,0] < R entity relationships are captured in a
matrix A where rights drawn from R get assigned to each entry a[s, 0]. The protection
states of a system are then represented by the triple (S, O, A). Within this context,
leakage occurs when a generic right r € Ris added to an element of the access control
matrix not already containing r. The set of authorized states for the system are those in

which no command c(xy, ..., Xn) can leak r.

21

Safety as described here is critical for CDS. These systems must employ access
controls that guarantee safety in order to prevent the inadvertent transfer or disclosure of
sensitive or classified information. Yet, we cannot analyze a system or process in terms
of its safety guarantees unless we precisely understand it. Our statechart-based approach
to formal process modeling provides the level of precision necessary to facilitate an
analysis of the model in terms of its safety guarantees.

D. STATECHARTS

Harel introduced statecharts to address a well-recognized problem with regard to
the difficulty of specifying and designing large and complex reactive systems where:

A reactive system, in contrast with a transformational system, is

characterized by being, to a large extent, event-driven, continuously

having to react to external and internal stimuli. Examples include

telephones, automobiles, communication networks, computer operating

systems, missile and avionics systems, and the man-machine interface of
many kinds of ordinary software. (Harel 1987)

His seminal work in the field of visual specifications has been studied extensively
and utilized in wide variety of subsequent research on the application of statecharts and

their successor, UML statecharts.

Dong and Shensheng demonstrate that statecharts can be used to model business
workflows by modeling an international travel agency’s process for handling customer
travel requests. They show that it is possible to represent hierarchal levels of the
workflow and transition between levels by leveraging the AND/OR decomposition of
statecharts, which provides the ability to, in effect, “zoom in” and “zoom out” of the
model (i.e., move between abstract layers). Additionally, they suggest that the well-
defined semantics of statecharts allow for the verification of statechart-based workflow
models (Dong and Shensheng 2003; Harel 1987, 233-235).

Drusinsky applied UML statecharts to real-world specification and verification in
(Drusinsky, Shing, and Demir 2006; Drusinsky 2006; Drusinsky 2008). Though the
concepts and techniques introduced by Harel and Drusinsky focus on using statecharts for
the specification and development of complex, reactive, hardware and software systems,

22

we show that these same techniques allow us to formally specify and reason about the
largely human-based CDS Workflow process. Drusinsky uses a Java based statechart
notation (i.e., any Java statement can be written as a statechart action, any Java condition
can be written as a statechart transition guard, and any Java method name can be written
as a transition event) as a basis for describing reactive systems (Drusinsky 2006;
Drusinsky 2011). In other words, this Java based statechart notation is Turing equivalent.
The notion of Turing equivalence in our chosen notation is important as this equivalence
relationship tells us that the language described by the notation computes precisely the
same class of functions as Turing machines. Therefore, the deep body of research on the
power of Turing machines applies to this Java based statechart notation. For additional
details, authors such as Sipser, Hopcroft, and Kelley provide a more complete discussion
of the Turing machines and their range of computable functions (Sipser 1997; Hopcroft,
Motwani, and Ullman 2007; Kelley 1995).

Building on earlier work, Drusinsky and Shing extend UML statecharts to include
K-statecharts (Drusinsky and Shing 2009). This construct allows the use of knowledge
logic formulae; a form of modal logic used for reasoning about multi-agent systems, for
modeling multi-agent systems whose behavior depends on knowledge and belief
statements made by the system agents. Their model provides inter-visibility amongst the
agents. The ability of an agent to view into and act upon the behavior (i.e., states) of
another agent allows the development of formalized, executable models for complex

multi-agent systems.

Crane and Dingel explore the syntactic and semantic differences between three
different statechart formalisms: Classical, UML, and Rhapsody (Crane and Dingel 2007).
Their results indicate a lack of standardization between these formalisms. They show
that due to subtle semantic and syntactic differences a model that is a well-formed
statechart in all three of these formalisms may exhibit different behaviors in each of the
separate formalisms. This is not a concern for the research described in this document as

we use only one of the formalisms, UML statecharts.

23

E. REQUIREMENTS

In the field of formal verification of systems or systems-of-systems, we ensure
that the behavior of a subject system complies with its formal correctness specification.
However, the formal specifications are often based on natural language (NL)
requirements specifications. Drusinsky points out NL specifications are often ambiguous
and we must be careful when writing formal specifications from NL in order to ensure
that the translation is as accurate and precise as possible. Several ongoing research
efforts address this problem. Bruegge and Dutoit articulated a UML-based model for
requirements elicitation and analysis that demonstrates the capturing of customer
requirements, typically in natural language and subsequent translation to formal or semi-
formal notation. The transformation to a more formal notation ensures that system
developers work from a common understanding of the requirements provided by system
stakeholders (Bruegge and Dutoit 2004, 123-166). Drusinsky showed us how to identify
NL requirements of interest from UML analysis diagrams (e.g., activity diagrams,

message sequence diagrams) (Drusinsky 2008).

It is important to validate formal requirements specifications to ensure they
correctly represent the intended behavior. In the case of requirements specifications
written as statechart assertions, Drusinsky, Michael, Otani, and Shing introduced a
pattern-based methodology for validating them against their NL requirements. This is
particularly useful when the assertions are grouped into libraries of reusable formal
specification assertions. The underlying concept for this approach is that statechart
assertions are often focused on a specific, coherent concern. This suggests a likelihood of
ensuring they correctly represent the intended behaviors by testing them against a finite,
representative set of validation scenarios. The pattern-based methodology uses
representatives groups of tests (i.e., patterns) such as obvious success, obvious failure,
event repetition, and multiple time intervals to ensure that testing includes the type of
scenarios often overlooked in the validation process. (Drusinsky et al. 2008; Drusinsky
2011)

24

Our work addresses validation of requirements for human-based processes by
facilitating the clear, visually appealing articulation of requirements in the same notation
used to model a process under examination. When articulated in this manner, post-facto
analysis and modification of these requirements may be performed in a rigorous and
well-structured manner. Our work addresses the requirements verification concern for
software engineering related human-based processes by ensuring process adherence to
requirements articulated in statechart assertions and embedded within our statechart-

based process models.

F. RESEARCH GAPS

This research identified gaps in the wide body of research on process engineering
and process validation and verification. A significant body of research exists on the
development of executable software development and business process models from
formal specifications. However, a gap exists with regard to conducting runtime
verification of the executable process models. Our work addresses this need by providing
a formal process modeling approach with runtime verification of the executable process
model via embedded statechart assertions. We achieve this by treating human-based
processes, conceptually, as reactive systems and applying to them formalized tools and

techniques.

We examined research that articulates the challenges of taking a model developed
in a language lacking a formal semantic and translating that model to a sufficiently
formal language to allow verification. Our modeling approach addresses this gap by
allowing the process engineer to both design and verify process models within the same

formal specification language.

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

I11. THE MODELING APPROACH

In this Chapter, we describe the approach by which we apply formal methods
tools and techniques to the modeling of partially automated, human-based, C&A

processes.

A. FORMAL METHODS TOOLS AND TECHNIQUES

1. Desirable Attributes of Formal Methods to Support the Modeling Ap-
proach

Analysis of the research discussed in Chapter Il revealed knowledge gaps in the
field of applying formal methods to high-level processes. We developed a set of
desirable attributes for a formal specification language and associate tools to support the
modeling of high-level, human-based processes and address the identified knowledge
gaps.

The language should have a well-defined syntax and semantics in order to provide
the level of formality necessary to unambiguously model and facilitate V&V of the
process. The visual representation of the language should be sufficiently understandable
as to provide a good communication medium between users, stakeholders, and process
engineers. The language needs to provide mechanisms or artifacts that allow the formal
specification of human-in-the-loop decision-making. The language needs to be able to
represent attributes such as hierarchy and concurrency that are often found in complex
human-based processes. The formal specification of the model as well as the artifacts
necessary for verification of the model should all be expressible in the same language.

Table 2 shows a comparison chart for the languages.

The language’s associated tools should provide a mechanism for building a visual
representation of the models using the chosen language. The modeling tools should
provide the flexibility to make adjustments to the process model as necessary. They
should also be able to generate an executable representation of the model. The associated
tools should provide the ability to conduct runtime verification of the modeled process,

an automated means of verifying an executing model’s adherence to specified properties
27

or requirements. This would require a means of monitoring the process model in
execution and enforcing desirable runtime properties of the executing process model,

such as ensuring adherence to temporal constraints.

We hypothesize that a formal language and associated tools that have, at a
minimum, the listed attributes will enable the formal specification, maintenance,
validation, and runtime verification of a model that accurately represents a partially
automated, human-based, C&A process and provide a viable communication medium for

discussing the process among users, stakeholders, and process engineers.

2. Assessment of Formal Methods for Desirable Attributes

We assessed several formal languages and their associated tools, such as
Communicating Sequential Processes (CSP) (Hoare 1985), Petri nets (Emmerich and
Gruhn 1991), the Z formal language, and UML statecharts (Drusinsky 2006) to determine
whether they possessed the attributes listed in Section I11.A.1. These languages are
compared in Table 2 on the basis of how closely each on matches our set of desirable

attributes.

28

Table 2. Desirable Attributes of a Formal Language for Process Modeling Approach

Language

Description of Attributes .

<] =

o g -

) - N S ©

O = o 3

ke o

()]
Well-defined syntax/semantics
Easily understandable (visual) O O
Specify human decision-making O
Represent nesting O
Represent hierarchy O O
Represent concurrent activities
Model/verify in same language O

Ryan and Schneider used CSP as a modeling mechanism for a variety of security
protocols (Ryan and Schneider 2000). Wong and Gibbons demonstrated a technique for
representing BPMN process models in CSP in order to provide a semantics for formal
analysis and comparison of BPMN diagrams (Wong and Gibbons 2008). As discussed in
Chapter Il of this document, CSP is based on a relatively complex mathematical notation.
Many researchers in the field of process modeling have discussed the importance of
reducing the complexity and increasing the ease of understanding formal process models

in order to better communicate with process users, stakeholders, and designers

29

(Emmerich et al. 1996; Koehler, Tirenni, and Kumaran 2002; Zongyan, Liyang, and
Hongli 2010; Hurtado Alegria, Bastarrica, and Bergel 2010; Hurtado Alegria, Bastarrica,
and Bergel 2011; Karniel and Reich).

Many researchers have applied Petri nets to high-level processes as a means of
formal specification. The works of Emmerich and Gruhn (1991); Gruhn (1992); Van Der
Aalst and Van Hee (2004); and Van Dongen, Van Der Aalst, and Verbeek (2005)
demonstrate a variety of methods of applying Petri nets as a tool for process modeling.
The graphical nature of Petri nets makes them an excellent tool for communicating about
a process under examination. However, researchers have pointed out that Petri nets do
not scale well for the visual representation of large, complex processes as the basic Petri
net formalism lacks artifacts for representation of hierarchy. Clempner proposed an
extension to represent hierarchy in a subclass of Petri nets known as Decision Process
Petri Nets (DPPNS) though his work is formative in nature (Clempner 2010).

Hibdon and Hartrum built an executable model of a U.S. Air Force component
known as a wing. Their modeling process required creation of an informal Rumbaugh
object model (Rumbaugh et al. 1991), translation to the formal language Z, and
subsequent translation into Refine constructs for execution (Hibdon and Hartrum 1996).
The final product of their multi-step approach was an executable model; however, the Z
language and the Refine construct are both complex, non-visual representational

formalisms.

UML statecharts are a visual formalism that has been used for representation and
formal specification of systems, architectures, and processes. As discussed in Chapter Il
of this document, researchers have demonstrated that UML statecharts have well-defined
semantics with artifacts expressive enough to capture elements of human-in-the-loop
decision-making. They have been demonstrated as an effective visual communication
mechanism for communicating about processes (Dong and Shensheng 2003).
Specifications written as statechart assertions and embedded within a statechart-based
process model enable runtime verification of the model. UML Statechart assertions are a

class of statecharts and as such, written in the same language.

30

UML statecharts possess the desired attributes for a formal specification language
that we outlined in Section I11.A.1. This formal language was the best fit in terms of its

potential for use in addressing the research gaps identified in Chapter Il.

After deciding on a language that satisfies the stated desired attributes, we needed
to determine if any of the currently available tools for working with UML statecharts
would satisfy the requirements stated in Section IIl.LA.1. Both research based and
commercially based tools exist for the design and manipulation and statechart-based
models. We look at several of these tools such as VisualSTATE, Yakindu, and
StateRover (IAR Systems 2012; Muelder 2011; Drusinsky 2006).

VisualSTATE is standalone statechart-based modeling tool that also provides a
point-and-click interface for easy development and editing of models. This software has
a built-in module for code-generation to automatically create an executable representation
of the model in C++. The software automatically performs syntactic verification to
ensure model compliance with the underlying language rules. The verification module
includes the functionality for static analysis of the model to ensure compliance with both
pre-defined and custom properties. VisualSTATE has a dynamic analyses module that
can provide an animated view of how specific events affect a model. Events are fed into
the simulation via an interface with the ability to replay sequences of logged events.
However, VisualSTATE does not include the functionality to enforce requirements in

conjunction with runtime execution monitoring.

Yakindu is a statechart-based modeling tool that operates as a plug-in for the
Eclipse integrated development environment (IDE). Yakindu is a visual modeling tool
that does provide a mechanism for automated generation of an executable model. It has a
point-and-click interface that makes it easy to build and dynamically adjust models. The
Yakindu plug-in has the capability to interface with an external code-generator module
capable of mapping a statechart model to C or Java source code. However, the code
generator module is experimental and must be installed separately from the Yakindu

plug-in. The plug-in applies automatic syntactic verification rules to each statechart

31

model and reports discrepancies to the model developer via both visual and textual
cueing. Yakindu provides a simulation function that executes the generated code but it

does not provide the ability to conduct runtime verification.

StateRover is a UML statechart-based modeling plug-in for the Eclipse IDE. This
tool includes a built-in code generation module that automatically maps a statechart
model to C, C++, or Java source code. Model design is accomplished through a point-
and-click interface that makes it easy to build and dynamically adjust or reuse models.
The tool includes an automated syntactic and semantic validation module to ensure model
compliance with the underlying statechart syntax rules and semantics. In addition, code
generation will not run unless the model is able to successfully pass the syntactic and
semantic validation with no errors. StateRover provides the functionality for runtime
verification of a statechart model through the application of embedded statechart
assertions enforced within the model during execution. StateRover provides an
integrated, white-box3 test generator that builds test cases for use in automated testing.
The generated test cases are used in within the JUnit# test framework to provide runtime
execution monitoring of the model as it enacts the generated test cases. Embedded
statechart assertions serve to enforce runtime properties or constraints placed on the

model (e.g., temporal constraints).

Of the statechart modeling tools surveyed, StateRover possesses the desired
attributes outlined in Section 111.A.1 for a tool designed to enable modeling in our chosen
formal language. This tool was a best-fit in terms of its potential for use in addressing the

research gaps identified in Chapter II.

B. PROCEDURE

The diagram shown in Figure 6 outlines our process modeling approach. Solid
lines represent the primary procedural flow path. Dashed lines represent ongoing

communication with process stakeholders to ensure a modeled process aligns with and

3 The white-box test generator is discussed in Section 111.C.6.
4 The JUnit test framework is discussed in Section 111.D.3.

32

achieves their desired outcomes as originally specified in stakeholder requirements. This
ongoing feedback loop is one component of model validation.

Our approach provides the level of formalism necessary to rigorously specify a
partially automated, human-based, C&A process and conduct runtime verification on that
process to ensure the process behaves exactly as it was designed. This allows the process
engineers and stakeholders to ensure that the process flows exactly as it is intended.
Formalization will significantly improve the final product of a process for developing,
implementing, and C&A of cross domain solutions designed to facilitate and guard the
flow of information between various security domains. Formalizing the process will help

ensure that it provides a product that is well-defined, well-developed, and consistent in its

execution.
Stakeholder Derive Requirements i Process e N
— — = + Process Analysis o +~—— Start
[Expectations 4 Selection —
I
Validate J
Against I
Stakeholder (Legend
requirements {_lt'
. Stakeholder
| S Feedback
I lterative Validation | €onstruct Constr'uct terative Loop
| Process — Assertion Vali dation
| - Model Statecharts _ P::Efs
val o
|\h a P?(:S::: Validate
T Model No ASSEI‘tIOf‘IS) Merge/Separate
| | . o
[Iterative
Iterative Validation |
I
| Va“datE " Model Model J |
Validated Validated '
I Yes
| Yes |
| p
I l | V&V
: | Process
| '__L;_. Embed Assertionsin | | | Model
| Process Model | ¥
|
I Validate |
| Agamst «—— Runtime
Stakeholder -~ — — Execution
requirements 'rl\'deasrtlilrjfl Monitoring
9 (Automated
testing)

Figure 6. Overview of Statechart-Based Process Modeling Approach

33

1. Iterative Design

Our modeling approach allows the process engineer to iteratively create a process
model in conjunction with creation of the process itself. Once the process is established,
the process engineer can use this approach to adjust the model throughout the lifecycle of

the underlying process.

Berry and Wing tell us that a second look at the thing being formalized can result
in a better product, since for any large or highly complex project, one must understand
the problem — a lack of understanding can lead to catastrophic failures. They go on to
suggest that such an understanding is more likely to be achieved when building a
“complete” model of the intended system (e.g., a formal specification or a prototype)
(Berry and Wing 1985). Our approach facilitates such an understanding of the modeled
process through construction of the UML statechart-based process model. For example,
Figure 7 is a process outline of the CDIP provided by the UCDMO while Figure 8 shows
the statechart-based model developed through our modeling approach applied to the
CDIP.

Initiate Request Community Vet Capability Options Evaluation Authorize Operate
! Designated
Initiate CD ey | Enterprise b -
=)
CD Office | Existing TS | Accredme pop| Operated
authorizes " capability | (oo P>l Tkee
request [Official) i
v 'y |
P |20 LOC 1 E |
¥ ' :
UCDMO Community Modified]
processes b »| approvalvia Exsting P — mplement/ Site }, (). 10
— |
|
Loc 3 | i
| i
1 10
i | |L,| certification |, /. Appellate
M : ks ‘ E v
-
o

Figure 7. Cross Domain Implementation Process (CDIP)
34

The outline of Figure 7 is informal in the sense that it pictorially describes a
process, yet it has none of the elements necessary to be considered a formal specification.
We consider a specification to be formal when it is written with mathematically based
techniques as the foundation for the specification language. Gabbar says, “A
specification language is based on a set of formulae, written in a formal language, to
describe the underlying system” (Gabbar 2006). In the case of our modeling approach it

describes the underlying human-based process.

Figure 8. StateRover Model of CDIP

Figure 8 shows a large-scale view of a formal model of the CDIP. We developed
this model using our statechart-based formal modeling approach in conjunction with the
StateRover modeling tool. The CDIP formal model provides us with an unambiguous
view of the process under examination. The process of building the UML statechart-
based model serves as the “very important” second look described by Berry and Wing
(Berry and Wing 1985).

2. Terminology

We use the terms thread, transition, decision-point, process requirements, timing,
complexity, layering, and scenario in a particular way and provide definitions below to
ensure readers develop a common understanding of our lexicon for development of a

statechart-based process model.

35

a. Threads

In our approach to formal process modeling, we use statechart threads (the
blue dashed-line boxes of Figure 9) to represent orthogonality within states.
Conceptually, orthogonality resembles concurrency though it is different in that the
activities captured in different threads are, for the most part, independent of, or
orthogonal to each other; whereas concurrent activities occur in relation and typically at
the same time as one another and due to the interrelationship can involve interference,
synchronization, locking, and recovery. Throughout this document, we use the term
thread to refer to statechart threads vice OS-level or programming language related
threads. The latter threads are typically used as the computer programming
implementation of concurrency while the former provides a means for notating the

existence of orthogonality within a process.

B/ RefTo0pMan... B/ RefTo0pMona

Oss

I
I |
I |
I |
I |
I |
I 1
I |
I |
\ _ [
I S:cAss:rtwn |
I |
I |
I |
I |
I |
I |
I |
I |
I |
I |

™, Monitar[]/

I
I
I
I
I
I
I
I
I
I
}
I
I . Osas ", SecPrabll/
| T3%
I
I
I
I
I
I
I
I
I
I
I

Figure 9. Example of Threads in "Op_Monitor" Sub-Process

36

b. Transitions

A process has as its atomic operation what we call “steps.” There can be
sub-processes as well. Sub-processes represent sets of steps grouped together on the
basis of cohesion and coherence. The Oxford English Dictionary defines these terms as:
cohesion, “the action or condition of cohering; cleaving or sticking together” and
coherence, “consistency in reasoning, or relating, so that one part of the discourse does
not destroy or contradict the rest” (Oxford English Dictionary 2012a). Within a process
there can be transitions between steps, as well as between sub-processes. In our
modeling approach, transitions between sub-processes are modeled using an artifact
called “off-page references.” We see a transition from processing a CDS request to
implementing the CDS in Figure 10. CD_Officer_Validator is a thread contained within
the Process sub-process of the CDS model. In this case, we observe a transition from the
sub-process named Process to the sub-process named Arbitrate via the off-page reference
RefToArbitratel (outlined in red).

“CD_Officer Validator”
thread of “Process CDS”

sub-process \

Figure 10. Transition Using an “Off-Page Reference” Artifact

37

C. Decision Points

We are interested in modeling processes that have a strong flavor of the
human playing a significant role in the enactment of the process. The process itself can
have varying levels of automation, and the level of automation may vary by modality and
circumstance. For instance, on a ship, the process of target acquisition and firing may be
highly automated under nominal operating conditions, but weapon systems (e.g., 5”/54
series guns) may be operated manually in highly degraded operations. In the context of
human-based processes, we refer to decision points as those places where a decision must
be made (e.g., yes or no, approve or disapprove) and that decision’s outcome falls within
an expected range of values. In other words, during process analysis, we seek out the
decision points and articulate them in the model as conditional- or value-based transitions

between components of the model.

O 8,31 Jdie Swate

Figure 11. Decision Point Example
38

The diamond in Figure 11, labeled bintApprovConn (outlined in red),
demonstrates the StateRover artifact view of a decision point in our process model. We
found a significant number of decision points when analyzing and modeling our
demonstrative exemplar processes. Therefore, we recommend using a table to manage
the associated variables and ensure all decision points are implemented in the model as
demonstrated in Table 3. In column 1 we use a plain language description of the
decision, in column 2 we list the variable name that will be used in StateRover’s visual
switch construct, in column 3 we list the possible outcomes of the decision point (i.e., the
possible values of the variable), and in column 4 we track whether the decision point has
been incorporated into the process model.

Table 3. Example Decision Point Tracking

Description Variable Name Possible In
Values Model
Decide whether CDS requestor is a DoD blsDod True,
component. False
Determine whether capability exists as | bEntOrCentCapaiblity True, O
an enterprise or centralized capability. False
d. Process Requirements

Process requirements are those properties, attributes, or timing constraints
that must be upheld as the process executes. For example, if a process requires that some
event occur at a set time, our process modeling approach provides runtime process
monitoring to ensure that the event occurs within a specified temporal constraint. A
(formal) specification is a representation of a requirement that uses notation a computer
can understand and read in a finite amount of time using finite resources (Drusinsky
2006). Our modeling approach uses a UML statechart-based language to build
specifications. We use this formal specification language to create embedded statechart

assertions, which serve to enforce process requirements at runtime.

39

e. Timing

Timing refers to quantifiable time constraints or restraints (e.g., the time at
which something must occur or the time within with something must occur). In human-
based processes, we expect to find many temporal restraints such as deadlines for
submitting paperwork. Therefore, it is important for a process modeling approach
intended to formalize human-based processes that we are able to capture and effectively
address timing related information. In order to build timing into our models, we leverage
temporal constructs inherent in our chosen modeling software. For example, the
statechart assertion of Figure 12 uses the TRTimeoutSimulatedTime construct of
StateRover to apply a temporal constraint to the modeled process. We do this by
embedding the statechart assertion of Figure 12 into the CDS process model. Embedded

statechart assertions are the primary vehicle for building and applying temporal

constraints and restraints to a process modeled with our approach.

[T 1
nErrar

On-Entry/bSucces: = falie
O timer Syakerm et pintlng“C0 S sertinRegu et Tenieg fo

Figure 12. Applying Temporal Constraints and Restraints

f. Complexity

Several researchers have examined the notion of complexity as it relates to
processes and have presented metrics to provide information about the understandability

and maintainability of business process models (Volker Gruhn and Laue 2006; Cardoso

40

2007; Cardoso et al. 2006). Cardoso presented the control-flow complexity (CFC) metric
for determining the complexity of business processes. This metric is expressed as a
summation of joins and splits (AND, OR, or XOR) in a process. In general, the more
splits and joins a process has, the more complex it is (i.e., it is more difficult to develop
and maintain complex process models). However, as Cardoso points out, the CFC metric
is somewhat simplistic and does not account for the increased complexity introduced by
nested structures (Cardoso et al. 2006). We adopt Cardoso’s definition of process
complexity and note that when applied to the type of partially automated, human-based,
C&A processes that we are interested in, as the number splits or joins and nested layers

increases, so does the complexity of the process.

g. Layering

Layering refers to the ability to individually articulate nested levels within
a process model. This is a particularly useful technique when analyzing and building
models of highly complex processes. For instance; in our exemplar process, the CDS, we
wish to capture various views of the model. This approach allows us to view the model
at varying levels of complexity, depending on the desired outcome of the viewing. For
instance, the top-level view of Figure 13 provides an overview of the process model with
each of the major phases depicted as a single state.
[

B rertassomer Ot

[

Figure 13. Top-level Statechart Model of CDS Workflow Process

41

This view provides a large-scale aspect on the process vice details of the
inner workings of each process. In the second level view, we can examine each sub-
process individually as shown in Figure 14 and Figure 15. The initiate sub-process is

articulated in Figure 14 while the Op/Monitor is articulated in Figure 15.

[

Figure 14. Sub-process Titled “Initiate._ CDSR”

These sub-processes sit at the second level of the hierarchy for the
purposes of our analysis and each represents a fuller view of its respective sub-process,
each of which is represented by a single state at the top-level of the process model. Part
of dealing with complexity is the ability to work in the abstract, and then incrementally
decompose the process into successively finer levels of detail (i.e., processes, sub-

processes, and so on).

42

B RefToophon.. (B RefToOpMont

(@Y

. Osae “, SecPrabll/

sy Manitord)/

Figure 15. Sub-process Titled “Op/Monitor”

The diagrams shown in Figure 16 demonstrate the successive
decomposition of four levels of hierarchy. When viewed together, we see that the ability
to deal with complexity in this way makes it possible to formally model hierarchical

processes.

43

s b b 13 e ey

PSSR

Figure 16. Decomposing a Complex Hierarchical Process Model

44

h. Scenario

In the context of our modeling approach, the term scenario refers to a
combined collection of desired properties, timings, human decisions, and/or conditions
that we wish to apply vis-a-vis a process model in order to exercise or stimulate various
aspects or behaviors of the model. We use this term to describe situations for which we

will develop tests during the “V&V Process Model” step of our modeling approach.

C. MODELING APPROACH

In this section we will discuss the details of each step of our process modeling

approach shown in Figure 6.

1. Process Selection

Process selection is a non-trivial matter. Informal processes or well-defined
processes whose outcome is not safety or security critical may not require the level of
formality afforded by our approach. The application of our statechart-based modeling
approach requires a time investment to analyze the process and apply formal methods.
However, it is a worthwhile investment for the types of processes that we are interested in
formally specifying and reasoning about since the modeled process will be easier to
understand and communicate about and the resulting process modeling will be easy to

develop, debug, and maintain.

2. Process Analysis

Prior to constructing the process model in StateRover, it is helpful to analyze the
process. During this phase of our modeling approach, we are identifying components of
the process that lend themselves to articulation as artifacts in a statechart-based formal
model. This is also where we identify specific requirements or specifications which we
wish the model to adhere to. This eases the process of building and verifying the model.
It also facilitates the development of a more robust, granular, and higher fidelity model.
Process analysis facilitates a more full-bodied statechart-based process model via the

thorough a priori inspection of the process during model development. Similarly,

45

process analysis provides the process engineer an opportunity to identify many if not all
of the process components and timing considerations with a focus on the behavioral
properties of the model vice run of the mill functional properties and requirements.

Hence, we are able to develop a more granular and higher fidelity model.

Process formalization requires thorough analysis of the chosen process as a key
component of developing the formal model in StateRover. Through analysis, we develop
a better understanding of the process under examination and begin to formulate a plan for
contextualizing individual components vis-a-vis our modeling approach with its
associated views and terminology. We must understand threads, transitions, decision
points, process requirements, timing, complexity, layering, and important steps in the

process.

The process engineer uses a combination of available sources such as informal
drawings, interviews with stakeholders, mission statements, modeling diagrams (e.g.,
UML activity diagrams, YAWL workflow charts), or basic flowcharts. The focus of this
phase of our modeling approach is to develop as complete an understanding of the
process as possible. One of the challenges of process analysis is that the stakeholders
and/or process owners’ understanding and documentation of the process could range
from tribal knowledge held by one or a few individuals to more formalized
documentation such as written flowcharts or models based on notations like BPMN or
UML.

During this phase of the modeling approach the process engineer also gathers
requirements from process stakeholders. These will provide the source material for
developing embedded statechart assertions, a key element to enable runtime execution

monitoring of the process model.

We show in Chapter IV of this document how the analysis of a process leads to a

fully realized statechart-based formal model of the process.

46

3. Construct Process Model

It is during this step of the modeling approach that the process engineer builds the
statechart-based process model. Leveraging the products of the “Process Analysis” step
he visually articulates the process using the formal language and tools chosen for their
adherence to the desirable attributes listed in Section I11.A.1.

We previously demonstrated the novel use of UML statecharts as a medium and
the StateRover modeling tool as a mechanism for formally modeling the CDIP, a partially
automated, human-based, C&A process (Schumann 2009). In this document, we
demonstrate the use of UML statecharts as a fundamental component of the process

modeling approach shown in Figure 6.

Since our chosen modeling tool generates an executable model in Java we are
able to add Java code to just about any component of the model such as states, transitions,
or flowchart boxes. In our discussion of case studies, we will show how this
functionality helps us ensure that embedded assertions are enforced at runtime.
[

B rertassomer Ot

[

Figure 17. Top-level Statechart Model of CDS Workflow Process

UML statecharts provide a visually palatable vehicle for the articulation of,
formalization of, and communication about a process model such as the one shown in
Figure 17, a process model for our demonstrative exemplar, the CDS Workflow process.

In addition, we are able to take full advantage of automated statechart-handling

47

capabilities built into StateRover such as hierarchy, concurrency, non-determinism,

syntactic validation, workflow modeling, automated testing, and runtime monitoring.

a. Iterative Validation

During the design process, the process engineer is able to use the
immediate feedback from StateRover’s underlying rule checking mechanisms to identify
possible errors within the process model. The process engineer can use the errors
identified via this mechanism to diagnose, troubleshoot, and correct inconsistencies in the
process model. This systematic approach helps ensure that the model is founded on and

adheres to the underlying UML statechart formalisms.

(001 (2] va (1 (@7 P05 [2oC Bhe 1 Bhe doc

Resouce Path Location Type
Ready

Figure 18. StateRover Automated Validation

Figure 18 demonstrates the embedded error identification within the StateRover
plug-in. For this example, we deliberately placed a unitary terminal state, circled in red,
in the CDS Workflow process model’s top level. Since this terminal state does not have
a corresponding start state, it constitutes an error and is identified as such via
StateRover’s embedded validation mechanism. We refer to this as iterative validation

48

and use it throughout construction of the process model and the statechart assertions to
ensure they adhere to the underlying UML statechart semantics.

4. Construct Statechart Assertions

In this step, the process engineer transforms the requirements developed during
“Process Analysis” into statechart assertions. The UML statechart articulation of each
requirement is in the same statechart-based language as the rest of the model. This
provides a precise way of stating requirements that directly takes advantage of the
formalisms used to develop the process model. During the execution phase of our
approach, embedded statechart assertions are employed as enforceable runtime

specifications.

Embedded statechart assertions are a key addition of this research to the process
modeling world. They facilitate runtime execution monitoring as well as enforcement of
desirable properties or requirements placed on the process (i.e., submission timeline for a
request necessary for process progression). Within this section, we cover the conceptual
foundations of statechart assertions. We explore their benefits as applied to process
engineering and modeling. We investigate their employment to achieve runtime

monitoring of a human-based process in execution.

a. Statechart Assertions

A reason for using a formal methods based modeling approach is to
demonstrate mathematically that the model adheres to a set of stated requirements. A
number of formal notations exist for the specification of formal models. Some examples
include the Z Notation, Vienna Development Method (VDM), and the B Method (Monin
and Hinchey 2003). Each formal notation can be distinguished by its particular
application of set-theoretic mathematical concepts, the underlying logic, or how they
assist in the development of computer programs, which is the typical use for such

notations. For statechart-based modeling, Drusinsky provided an analogous capability by

49

extending UML statechart diagrams to include statechart assertions, which provide a
formal artifact for the specification of requirements (i.e., a formalized specification

language).

Statechart assertions have two fundamental differences from the
statecharts used throughout the rest of our modeling process. 1) They have a built-in
mechanism for indicating Boolean success or failure (true/false), which makes them
suitable for formal specification and 2) they can be nondeterministic if desired. Figure 19

Figure 19 shows a statechart assertion.

Drusinsky points out that it is important to exercise meticulous care in the
development of statechart assertions as bad assertions reflect poorly conceived
requirements and are unlikely to help ensure the system behaves as desired (Drusinsky,
Shing, and Demir 2007). Additional papers by Drusinsky, et al. provide more examples
of the development and application of embedded statechart assertions (Drusinsky 2008;
Drusinsky, Shing, and Demir 2006).

This assertion is designed to test the following requirement:
R A review of the CDS request must be completed within 100 time units of
the time review begins

™ primaryEntered("Review_Request_for_Completeness")[)/

[T
nError

On-Entry/bSuccess = falsg;

(O timer Systemerrprintin("CDSAssertionRequestTiming fa
™, Requirements_Valid(1/

On-Entry/timer.restart(); ", timeoutFire[)/

Figure 19. Example of an Statechart Assertion

Sindre and Opdahl postulate that a visually appealing approach may
actually be more successful than a textual approach when capturing requirements. This is

50

because simple and intuitive diagrams provide a better overview of the functionality of a
system and make it easier to see each stakeholder’s interest in the system which makes it
easier to communicate about the captured requirements (Sindre and Opdahl 2000). The
combination of UML statecharts and embedded statechart assertions provides us with a
visually appealing formal process modeling approach wherein the model and the
assertions that enforce properties of the model are written in the same language, in this
case UML statecharts. This addresses one of the challenges seen in previous formal
process modeling research; the integration of a separate formal specification language in
order to add formalisms to the process modeling approach (Emmerich and Gruhn 1991).
Additionally, process models will be easier to develop, debug, and maintain due to the
ability for users, stakeholders, and process engineers to easily communicate about the

modeled process.

b. Validating Statechart Assertions

According to the Oxford English Dictionary, an oracle is, “an opinion or
declaration regarded as authoritative and infallible” (Oxford English Dictionary 2012b).
Since both our process model and the statechart assertions that represent requirements on
the model are derived from natural language descriptions, it cannot be assumed that one
is more of an oracle than the other. However, the properties upon which we base
statechart assertions are typically small enough that they don’t require more than five to
ten validation tests. This suggests that we can use a relatively small number of tests to
build a body of evidence for using the assertions as an oracle for testing the behaviors of
a process model. A pattern-based methodology like the one described by Drusinsky,
Michael, Otani, and Shing can help ensure that we cover often overlooked testing areas
when writing validation tests for our assertions (Drusinsky et al. 2008; Drusinsky 2011).
They describe scenario test patterns such as obvious success, obvious failure, full

scenario success, full scenario failure.

o1

Timeline Segment from 0 to 90

primaryEntered("Review_Request_for_Completeness") Requirements_Valid()

a

0 90

Time

Figure 20. Timeline Diagram for “obvious success” Assertion Test Scenario

The diagram of Figure 20 shows a test scenario to ensure that the assertion
of Figure 19 succeeds when it is supposed to for a simple set of conditions (i.e., obvious
success test pattern). Once the assertion has entered state Timer it must see a
Requirements_Valid() event with 100 time units or the assertion fails. The event
Requirements_Valid() occurs at time 90 and no further events or transitions occur so we

expect this assertion succeed during testing.

Timeline Segment from 0 to 120

primaryEntered("Review_Request_for_Completeness”) Requirements_Valid()

0 120 Time

Figure 21. Timeline Diagram for “obvious failure” Assertion Test Scenario

In contrast Figure 21 shows a test scenario to ensure that the assertion of
Figure 19 fails when it should for a simple set of conditions (i.e., obvious failure test
pattern). In this case, the timer advances past 100 prior to a Requirements_Valid() event

so a timeout will fire and cause the assertion to fail.

5. Embed Assertions in Process Model

During this step of the modeling approach, representative artifacts for each
statechart assertion are embedded in the process model. Figure 22 demonstrates the use

52

of an embedded assertion in the CDS Workflow formal process model. In the “Initiate
CDS Request” phase of the CDS Workflow we use an embedded assertion, _assertl (see
Figure 22, outlined in red), to ensure that the human decision makers initiating a CDS
request have set impact levels for the requested CDS. Impact levels provide a means of
categorizing national security systems in terms of the potential impact of unauthorized
disclosure of the information residing on the system and must be explicitly stated as part
of a CDS request.

We previously examined testing of statechart-based formal process models and
showed that embedded assertions could be applied to formal models of human-based
processes (Schumann and Michael 2009) as a means of enforcing requirements. When
testing the model, failures to adhere to the requirements of the assertion are recorded and
reported by the testing module. This ensures that the model behaves as expected under a
wide variety of conditions while the executable version of the model is running. This
technique allows us to use embedded assertions as an enforcement tool for process
requirements because the embedded assertions are located within the model (see Figure
22), which provides unique access to the process model’s events, variables, and timing
structures as it executes. This positioning is the enabler that allows embedded statechart

assertions to act in an enforcement role.

The _assertl box of Figure 22 is an example of the method by which an statechart
assertion is embedded within a process model. The _assertl box acts as a placeholder
and insertion point for the statechart assertion of Figure 19 which shows the statechart
assertion for ensuring that meets temporal requirements. The natural language version of

this requirement is:

“R1: A review of the CDS request must be completed within 100 time units of the

time review begins.”

If this assertion detects a setLevelsNull system event, bSuccess is set to false
whereas a setLevels system event prints a message to the runtime monitor console and
the statechart assertion remains in the Start state. This provides one example of the type

of response mechanism available upon detection of a system event. The bSuccess

53

Boolean variable allows the process engineer to validate whether the conditions of the
assertion have been met or not. Verification occurs through an interlacing of the process
model and the JUnit Test framework to apply a variety of automatically and manually

generated testing scenarios.

! U'?a-.-.a-l-- Insute

._r.lrnll 18

B A i R e 11
Agaricn 4
5

¥
¥
]
]

4
.-} deatt_magian_seed

,---_--_-_--_-_-----..--_-
Tr
-

Cprmrrase Tirgdt mer pn nesg

|_}|- Same_Techoeesl_Pegqunemenia

D."F‘!:'l' sie,_lnpact_Leceln

-

vl mvehld

S et L0 bsieireast

Figure 22. Statechart Assertion Scoped by Substatechart Requestor_Initiate

An added advantage of embedded statechart assertions is that they are naturally
scoped by the context of their substatechart (Drusinsky 2006). Therefore, they are only
active when their substatechart is entered and they cease to be active when the process
transitions out of the containing substatechart. This property of embedded statechart
assertions lends itself to hierarchy and scalability in the process modeling approach. This

property also allows the process engineer to better deal with process complexity by
54

providing the ability to enforce process requirements in runtime at a variety of levels and
with varying scope. This also facilitates easier development, debugging, and
maintenance as the process engineer can quickly ascertain the scope of each embedded

statechart assertion.

6. V&YV Process Model

During this step of the modeling approach, we validate and verify the process
model. In order to discuss the notion of validating and verifying a process model we
must first define the terms validation and verification. Our research applies the terms as
defined by Drusinsky, Michael, and Shing (Drusinsky, Michael, and Shing 2007).
Validation is an attempt to ensure that the right product is built, that is, the product fulfills
its specific intended purpose. Simply stated, validation asks the question, “Did we build
the right product?” Verification is an attempt to ensure that the product is built correctly,
in the sense that the output products of an activity meet the specifications imposed on
them in previous activities. Simply stated, verification asks the question, “Did we build
the product right?” We leverage the components and capabilities of our chosen formal

modeling tool to validate and verify statechart-based process models.

We employ two types of verification in the modeling approach, manual testing
and runtime execution monitoring. Each of these uses test cases which are an important
construct for verifying that the executable version of a process model operates as
intended. Test cases are created in one of two ways. They may be manually generated
by the process engineer or automatically generated via the StateRover code generation
module and these two types of test cases are used in the “Manual Testing” and “Runtime
Execution Monitoring (Automated testing)” steps of our modeling approach,
respectively. Both automatically and manually generated test cases represent encoded
version of testing scenarios. For the type of partially automated, human-based, C&A
processes that we are interested in modeling, test cases equate to sequences of real-world
process related events, conditions, timing, and human decisions. They allow us to

examine the response or flow of a process model in a simulated test environment.

55

a. Validation

Our modeling approach uses three types of validation. 1) Automated
syntactic validation via algorithms built into our chosen modeling tool which we
discussed in Section I11.C.3.a. 2) Validation of statechart assertions to ensure they
accurately represent stakeholder requirements 3) Validation against stakeholder
expectations which requires process engineers to compare the model to requirements
derived during the “Process Analysis” phase of our approach and to maintain a review
and feedback loop with process stakeholders. The intent of validation is to ensure the
process model remains synchronized with stakeholder expectations throughout the design
process. In the Figure 6 overview of our modeling approach, this type of validation is
represented by dashed lines showing the feedback loop from process model to

stakeholders.

b. Verification — Manual Testing

The process engineer uses manually generated test cases for multiple
purposes. During the “Construct Process Model” and “Construct Statechart assertions”
steps of process model development, he writes manual tests to iteratively ensure
components of the model behave as expected. He also uses manual tests to ensure the
model, as a whole, accurately reflects the process being modeled and that the process
produces expected results for specific scenarios. He also builds tests to examine one or
more portions of the process during development, debugging, or maintenance. Figure 23
shows a manually generated test case that represents a testing scenario for the CDIP.

56

import junit.framework.TestCase;

public class new_testcase extends TestCase {

private CDIP CDIP_tester = null;
protected void setUP() throws Exception {
super.setUp();
//@todo verify the constructors
CDIP_tester = new CDIP();

=

For this test we execute events and set

* variables that will test to ensure flow
through the entire model and termination

* upon a SysNotSecure event while monitoring
* installed CDS.

*® J
f

public void testExecTReventDiapatcher() {
// initialize variables
CDIP_tester.LAA Accept();
CDIP_tester.LCDO_Accept();
CDIP_tester.bCDRF_Proceed = true;
CDIP_tester.bCDRF_Revalidate = true;
CDIP_tester.bCapabilityExists = false;
CDIP_tester.bModifyCapability = true;
CDIP_tester.bNewCapability = false;
CDIP_tester.iClassOfChange = 2;
CDIP_tester.bProceedFwd = true;
CDIP_tester.bAddToBaseline = true;
CDIP_tester.bSTE_Successful = true;
CDIP_tester.bAccred(D = true;
CDIP_tester.SysSecure();
CDIP_tester.SysSecure();
CDIP_tester.SysSecure();
CDIP_tester.SysSecure();
CDIP_tester.SysNotSecure();
this.assertTrue(CDIP_tester.isSuccess());
/* We set this.assertTrue because the assertion

* we are testing should succeed. If it does not,
* an AssertionfFailed error is thrown.

i

Figure 23. Manually Generated Test Case Used in CDIP Verification

This test case executes a scenario to test flow through the model to ensure
that specific events and variable settings will cause the model to behave in the way we

expect. In this case, we wish to see movement through the entire model via a particular

57

path and termination of model execution if a SystNotSecure() event is detected during the
operation and monitoring phase of a CDS’ lifecycle.

C. Verification — Runtime Execution Monitoring

During the manual testing phase, the process engineer works at a micro
scale, setting variables and events to an executing process model via handwritten test
cases. In contrast, during automated testing he works at the macro scale, adjusting test
parameters such as number of tests, test length, number of permissible loops or choosing
between stochastic and deterministic testing algorithms while a white-box test generator
(WTG) automatically adjusts the micro scale elements at runtime. He is able to use the
information from testing to better understand, debug, maintain, and communicate about a
process model. The executable version of a process model provides a vehicle for runtime
execution monitoring. The medium within which this vehicle operates is the JUnit test
framework. By leveraging the JUnit test framework we are able to apply at runtime
automatically or manually generated test cases against the executable representation of
our model. Automatically generated test cases facilitate exploration of all possible
execution paths available to the executable model and exploration of the effect of

numerous input sequences on the process model.

58

CDS_Workflow.statechart_diagram 1] TestCDIPOjava 3 1)) new_testcase java 7= CDIP statechart_diagram B

utomatic Statechart and MSC code generator and automatic test generator
y(Eclipse v128)

generator

time-rover.com

ster for chart:CDIP, SUT is CDIP
'y B
import junit.framework.®;
import java.util.Random;
import java.util.Hashtable;
import java.util.TreeSet;
import java.util.Iterator;
import java.util.StringTokenizer;
import com.timerover.staterover.ifacesrc.”;
import com.timerover.statechart.animation.®;
@ import java.util.Enumeration; []

public class Test(DIP@ extends TestCase {
/for testing a single test of interest
private static boolean bSingleTest = false;
private static int singleTestNo = @; contains the test number for the single test of

zero or negative number means: no limit)

/The maximal number of times a path may g

static final int MAX LOOP_ITERATIONS = 1;
static final int MAX STUTTER_ITERATIONS = @;

static final int TEST_DEPTH = 20;
static final int MAX_TESTS = 5€9;
static final int TWENTY = 20;

static final int SEED BASE = 1;

static final int SEED INCR = 1;

static final int INCR_TIME LOWER_BOUND

B & =1;
static final int INCR_TIME UPPER_BOUND = 1

900 ;

static final int DUMMY ANY EVENT = -1;
static final int DUMMY DEFAULT EVENT = -2;
static int nGlobalID = 8;

private CDIP ¢DIP = null;

private Hashtable loopTable;

f vate Hashtable visitedStateConfigsTable;
private Hashtable eventNameTable;

private TreeSet tsAllEvents;

private TreeSet tsFailedTests;

private TreeSet tsFailedAssertions;

private TreeSet tsTargetStateTests;

private long lCyclesThatDidTouchAssertions;
private long lCyclesThatDidNotTouchAssertions;
private long lRunsThatDidTouchAssertions;
private long lRunsThatDidNotTouchAssertions;
private boolean bSuccess;;

Figure 24. White-box Test Generator Code Snippet

StateRover employs an embedded WTG, which is automatically created
by the code generation model. The WTG of the CDIP process model is shown in Figure
24. This provides the flexibility to generalize and scale the WTG to a wide variety of
processes. The WTG is specific to each SUT and is built during automated code

generation of the executable version of the process model.

59

Table 4. Runtime Execution Monitoring Data Collection

Test Run #
Description of Attributes
1 2 3 4
Number of tests per run 5 25 50 100
Failed assertions
All states visited O O O
Time to complete test run 77.5s 398.2s 853.9s 1523.6s

We use the feedback from testing to help assess and compare things such
as number of tests per test run, whether assertions failed in a test run, whether or not all
states were visited during testing, and time to complete each test run. These factors can
be tabulated and compared via a table format as shown in Table 4. A process engineer
should collect and compare the data necessary to understand, debug, and maintain the
process model. In our case, we show Table 4 as an example of the type of data we found

useful while developing our case studies.

D. STATEROVER MODELING TOOL

In this section we provide an overview of how the StateRover modeling tool, in
conjunction with the JUnit testing framework, can be used to carry out our modeling
procedure and list some of the technical details and considerations when using the tool.
As detailed in Section I11.A.1, StateRover was chosen because it most closely matched
the set of desirable attributes for a tool that would facilitate the development of process

models in our chosen formal language.

60

1. Adding .Jar Files

When setting up the StateRover for process model development, several key .jar
files must be added to the Java Build Path found in the project properties as shown in
Figure 25, circled in red. Stateroverifacesrc.jar and TReclipseAnimation.jar are included
with the StateRover plugin and are required for code generation and animation of process
models created with StateRover. The files derby.jar, derbynet.jar, and derbyclient.jar are
required to enable StateRover’s data collection and reporting capabilities via an
embedded or external data collection facility. The process engineer uses the “Add
external JARs” command of the Java Build Path window to add these .jar files as a

component of the project. This step needs to be taken for each StateRover project.

= Properties for C05_Workflow @J Ili&
type filter text Java Build Path TR T
Resource -
Builders ™ Source | L= Projects | B Libraries | % Order and Export
Java Build Path JARs and class folders on the build path

d derbyjar - C\StateRover\Build' Export\ ExampleDoc\ Eclipse_version\Derky\ host | Add JARS..
ad derbyclient.jar - C:\StateRover\ Build\Export\ExampleDoc\Eclipse_version\Derby'clien

Java Codle Style
Java Compiler

)

ImEeoe aw derbynet,jar - C\StateRover\Build\Export\ExampleDoc\Eclipse_version\Derby\host A Exeroal s
Javadoc Location s < o rine o a :
m stateroverifacesrc.jar - C:\Users\bigschuworkspace\Eclipse_version_3 4 S
Project References = TR : ; i : & Add Varisble..,
; - i eclipseAmimation.jar - C:\Usersibigschu\workspace\Eclipse_version_3_4
Betactoemng Hetony =\ IRE System Library [jre6] Add Library...

Run/Debug Settings = JUnit 3

Add Class Folder...
[Add External Class Folder...
Edit...

Remove

'),‘ aK Cancel

Figure 25. Adding Necessary .jar Files to Java Build Path

2. Setting up the White-box Test Generator

In order to facilitate white box testing, the process engineer is able to adjust the
parameters of the white-box test generator (WTG) embedded in StateRover. These

parameters are adjusted via the “statechart.properties” file created automatically for each

61

new statechart diagram. For example, in Figure 26 the “CDIP” statechart properties
filename is circled in red with its associated WTG properties circled in blue.

[/3 Stmtectare Disgrars Mike - COP/CO sotechar praparses - chpae SOK R =
File Edit Navigate Search Project Run Statechart Editor Window Help
*H @& B-D-Q- BHE @™~ il vy . 5 * 5C Modeling
:

2 PackageE 51 T3 TypeHiera) = O[] TestCDIPOjava 10} new_testcase java EP CDIP statechart_diag [temp_deleted_text %B-cmp.uanmn_pw < BN =)
- W 4 Code Gen Properties
4+ Settings

L Assertion_usingAspect] Demo — —
] A‘S‘itl‘llull_\'lhdg:\:ﬂ_ﬁtmu 4 Output - ol
o tor Alg 4 Error Handling e = s
1 AssertionConflictDetectorExample + Visusl Debugging
&I AssertionDemo

B AssertionSanityChecking

4+ White Box Tester

4 White Box Tester

i cop 4 Algerithm | Detail Actual SUT Class CoIP
z [B (default package) 4 lnvariants J| Generate Assert True
& pictures 4 Loggers 7| Generate White Box Tester
i, JRE System Library [jre5] ¥ Dirgctony JUnit Test Number 1l
B Referenced Libraries + =g
B Unit3 + Time Max Loops 1
4 COIP_AssertionStatechartl statechar Max Stutter [
E CDIP_AssertionStatechart] statechar Max Text Length »
B CDIP_AssertionStatecharil statechar
EF CDIP_backup.statechart_diagram Number Of Generated Tests 500
L EE}:JPQ " Number OF SUT Instances 0
) statechart
EE Op Object Factory Class

g gren
12 CDS_Workflow Seed Start 1
& Driving_SRM_with_no_bahavior Target States For Test Generation |I
T BxternalAssertions
&J GoogleAndroidDemo_LunarlanderTRSI
L ldentifyingMissingAssertions_usingSRM
1 Knowledge_and_Belief
11 libdmg-hfsplus

Seed Increment

|
T MetaAssertions t

T M5C_Assertion

& NenD rtion_|

] Assertion_ . Problems & @ lavadoc| [Declaration| @] Eror Log | B Console| 5 Progress T =0|fas 2 R DRA™ = ||
&I ProcessModelingApproach 0 errors, 486 wamings, 0 others (Filter matched 100 of 486 items) ?ﬁ :tj
157 ReportProjectExample =

1] StateCoverage

] StatisticalfszertionDemo

L Test¥akindu

I TLC demo

I TLC_Threaded

T WhiteBiox_InputAssertions

T WhiteBox_usingAssertionsCnly
& WhiteBoaTesting_demo

Description
& Warnings (100 of 486 items) Status: ON - connected to Embedded/Loca

Figure 26. Statechart Properties and WTG Parameters

The “White Box Tester” properties view shown in Figure 26 demonstrates some
of the adjustable parameters. In many cases, the default properties applied at code
generation time are sufficient. For more advanced or complex process modeling, the

process engineer has the flexibility to adjust parameters via this mechanism.

3. JUnit Testing Framework

JUnit is well suited to the enable automated verification of partially automated,

human-based, C&A processes. Conceptually, the JUnit test framework is a pattern-based

62

framework of programs designed to facilitate the testing of software program
components. It allows the programmer to write scenarios to be implemented as
automated JUnit tests. One of the advantages of this approach is that once tests are
written they are repeatable, long lasting, and available for use in other testing situations
or modified versions of the original testing scenarios. This enables developers to
iteratively improve both the program under development and the automated tests used to
ensure that the program functions as desired/required. VIissides states that JUnit has
three primary goals. One, provide a framework within which developers will actually
write tests. Incorporating common developer tools into JUnit does this. Two, allow test
writers to create tests that retain their value over time. JUnit does this through Java based
test scenarios that, once written, can be understood and used by other process engineers.
Three, it has to be possible to leverage existing tests to create new ones (Vlissides,
Johnson, and Edgar 2011). Again, JUnit facilitates this through Java-based test scenarios

that, once created, can be used as the basis for additional scenarios.

In the context of our statechart-based approach to process modeling, the process
engineer uses the JUnit testing framework to test components of the process model or the
complete process model. JUnit provides a vehicle for runtime execution monitoring of

the StateRover generated executable representation of the process model.

StateRover fully integrates the use of statechart assertions. Drusinsky describes
three ways of applying assertions: as a component of the testing process, as part of a
simulation, and as a component of runtime execution monitoring (Drusinsky 2006, 229-
230). All three of these application methods are available through StateRover by
leveraging an interface with the JUnit framework.

63

THIS PAGE INTENTIONALLY LEFT BLANK

64

IV. CASE STUDIES

In the previous chapter we explained how our process modeling approach can be
applied to partially automated, human-based, certification and accreditation (C&A)
processes. In this chapter, we provide two case studies to demonstrate the application of
our statechart-based process modeling approach. These demonstrative exemplars show

the utility of our approach.

The first case study examines the Cross Domain Implementation Process (CDIP)
and the second examines the Cross Domain Solutions (CDS) Workflow. Early on in our
research, the CDIP was being developed by the Unified Cross Domain Management
Office (UCDMO) as the next-generation process for requesting, developing,
implementing, and certifying and accrediting a cross domain solution. We applied our

process modeling approach to the CDIP. This effort helped refine our approach.

During the course of our research, the UCDMO transitioned from the CDIP to the
CDS Workflow process. These processes are related in that the CDS Workflow process
is an evolved form of the CDIP. When UCDMO transitioned from the CDIP to the CDS
Workflow as the process responsible for governing the request, development,
implementation and C&A of cross domain solutions, we began to model the CDS
Workflow process as well. This effort provided us with a number of benefits: application
of our statechart-based modeling approach to two separate processes; fully exercising the
runtime monitoring capabilities of the modeling approach; and validating the ability to
apply process requirements as embedded assertions and enforce those assertions on an

executing model of the process.

The statechart assertions shown in this chapter reflect the typical hard-to-model
aspects of requirements on human-based processes. We demonstrate the modeling and
V&V of several requirements for each modeled process. Formalizing all possible
requirements on each process would not demonstrate anything additional and is
recommended as future work in Section V.B.3 of this document. A full-scale

65

implementation of all process requirements would include approximately 120 embedded
statechart assertions for each modeled process.

We believe the CDIP and CDS Workflow process are particularly well suited for
use in experimenting with our approach, given that these processes involve human
decision making, temporal constraints and restraints, nested sub-processes, workflow

elements and state changes.

A. CROSS DOMAIN IMPLEMENTATION PROCESS
1. Process Selection

The primary mission of the UCDMO is to support the timely delivery of secure,
robust, and cost-effective cross domain capabilities and enterprise services that enable
authorized US Government and strategic partner communities to safely share information
across security domains (Unified Cross Domain Management Office 2012). The
UCDMO has several concurrent initiatives designed to align and federate the
implementation and support of cross domain solutions (CDS). The UCDMO recently
published the following guidance materials on cross domain (CD) implementations of
information systems—CD Community Roadmap, CD Inventory List, and CD
Implementation Process (CDIP), all of which are available at the UCDMO Intelink
website (Unified Cross Domain Management Office 2012). In this section we show the
results of applying our modeling approach to the largely human-based CDIP (see Figure
27), which demonstrates the use of formal methods to specify and reason about a process

designed to implement cross domain solutions.

66

Initiate Request Community Vet Capability Options Evaluation Authorize Operate

Initiate CD
request

&<

i 67
Ucomo Community | Modified 1 Loc2 A
ru } T pproval via J T Existing [~ lmWﬂ:x%{fﬁ {3
request CDRB | Capability Secu

fLecs

L i Naw Capability }——> cmmuon } i;ppellm

rF_9
&

Figure 27. Cross Domain Implementation Process Informal Diagram

Encompassed within the CDIP is the Intelligence Community Directive 503 (ICD
503) C&A process (Director of National Intelligence 2008). This process is the means by
which the designated authorities such as the Cross Domain Resolution Board (CDRB)
decide whether to allow a given CDS to operate. The UCDMO is not a decision making
body; rather, it is responsible for the development, coordination, and oversight of the
CDIP and its successor, the CDS Workflow process. We view the process for
developing, implementing, certifying and accrediting cross domain solutions as critical to
building the evidence necessary for decision makers to weigh the risks of operating a

given CDS and to make the accreditation decision for the system.

2. Process Analysis

In the second step on the road to building a formal, statechart-based process
model, thorough analysis helps us develop a better understanding of the process under
examination. This analysis begins by gathering all available information related to the
process. In the case of the CDIP, the process was still in the formative stages and the

available documentation consisted of the informal flowchart shown in Figure 27 and
67

several conceptual PowerPoint presentations attributable to members of the UCDMO
team responsible for developing the CDIP (Unified Cross Domain Management Office
2008).

The CDIP is designed as a process that is easy for humans to understand and
follow. Historically, the field of formal methods was born out of a need to rigorously
specify and then perform verification and validation on systems, especially in the case of
security- and safety-critical systems (Monin and Hinchey 2003). Formal methods tools
and techniques are based on mathematical theories. One of the challenges of formally
modeling a process designed for humans is capturing those portions of the process that
involve subjective human activities like evaluation and decision making. For example,
Step 1 “Authorize Request” of the CDIP demonstrates the subjective nature of the
process (see Figure 28). In this step, a newly initiated cross domain request form (CDRF)
must be validated and authorized or rejected by a human within the requestor’s
agency/service CD office—a human-centric activity. Such activities need to be formally
specified within the context of the process and we do so using the diamond-shaped visual

switch artifact shown in Figure 28.

We use a compound state around Steps 0 and 1 o that
apply assertions to just these two steps in the proced

S LAA Rej
) y LY J N, LAA_Acceptl)/
01. i CDﬁF P by LCDO_Reject]) o ceep
“_‘___-O Stepl--Authornze_Request

On-Entry/

Requestor's Agency/Service CD Office reviews and validates
CDRF, assesses type of CD needed, and prioritizes CD request.

o |

/ N LCDO_J-c(eiI]-’
| Step3-1

blsDaD g [false)/ -

bEntOrCentCapability
Desc/ls the requestor a DoD component] ———————=

Desc/Does the requested CD capability already exdst a5 ¢

| ;
[false)/
OENOOCOOER -8 :
“y [truel/
M Step2--Process Request ; O Step3--Com]

A SCAD_Review_Request

Figure 28. CDIP Step 1 “Authorize Request”
68

Our analysis revealed that the CDIP is a more complicated process than the
flowchart of Figure 27 makes it appear. In fact, after evaluating the available
documentation, we found the CDIP to be a complex, multi-threaded, multi-layered,

temporally constrained process.

As prescribed by our process modeling approach, we identified individual threads,
decision points, and key elements for translation to the type of statechart artifacts used
when building StateRover models (e.g., states, visual switches). Of note, the list of
identified threads only includes those inherent to the process; we do not include instances

of threads used as an enabler for embedded assertions.

a. Threads

During Step 5 — Certification Test, a system is laboratory tested for
compliance with mandated security requirements. If a system passes this testing phase it
then moves to Step 6 — Implement. At the same time as a system proceeds to Step 6 —
Implement it is evaluated as to whether it should be included in the CD Baseline Systems
list. This evaluation proceeds independent of and concurrent with the system’s
implementation and subsequent site testing and therefore fits our criteria for identification
as a thread.

b. Decision Points

As described in Section I11.C.1 we use Table 5 to manage and track

decision points for inclusion in the process model.

69

Table 5.

CDIP Decision Points

Description Variable Name Possible In
Values Model

Decide whether CDS requestor is a DoD blsDod True, false
component.
Determine whether capability exists as | bEntOrCentCapaiblity | True, false
an enterprise or centralized capability.
Decide how to transition a CDS based iClassOfChange 1,2,3
on the associated level of change
Decide whether to initiate an appeal if binitAppeal True, false
CDS request is denied.
Should CD request form (CDRF) move bCDRF_Proceed True, false
forward through process after CDRB
review?
Does CDRF need to be revalidated after bCDRF _Revalidate | True, false
CDRB review?
Does the CD capability already exist in bCapabilityExists True, false
a fully implemented version?
Can an existing CD capability be bModifyCapability | True, false
modified to meet the requirement?
Is a completely new CDS required in bNewCapability True, false
order to meet the requested need?
Based on results of laboratory security bProceedFwd True, false
test, decide whether to move CDS to
next step of CDIP.
Decide whether to add CDS as a bAddToBaseline True, false
baseline system.
Decide how to proceed based on results bSTE_Successful True, false
of ST&E.
What is the result of the accreditation bAccredCD True, false
process?

C. Layers

The CDIP is composed of processes and sub-processes. Therefore, we
used statechart hierarchy when building the model. We determined that two levels of

70

hierarchy are required in order to accurately capture the nested processes within the
CDIP. In the diagram of Figure 27, each of Step 3 — Community Approval Via CDRB,
Step 5 — Certification Test, Step 6/7 — Implement / Site Security Testing, and Step 8 -
Accreditation were of sufficient complexity to warrant individual articulation as a nested

process.

3. Construct Process Model

In this section, we bring together the results of process selection and analysis to
articulate the formal process model of the CDIP. The diagrams of Figure 29 and Figure
30 show the right and left halves of the top-level view of the full process model. We

have split this diagram into two figures for clarity.

71

srannig

N Rt = |

Aek™,

Figure 29. Top-Level View of Final CDIP Process Model (Right Half)

72

LIRS

-
fapemies won-cvdng (0] e

B R L A L 0

A,
- ———

e Bu .- apdo ()

YOy O s dedy Apununiso).

anb iy -2
.E&Q‘I\I\llln 0 LT A
Avireg] %, \

1w Aprage Aamaedes 03 prinhe: s 00

]
1
1
]
)
1
s |
1

1 Ahvdag g =

" NN Y

b |
. |
: 1
)
)
]
1

LanEA uTaaaq wWosms ReRul

LEEID Y UrHOD
Jomtedepeang uig

foprpaes ot e
LRI 5o US43 BUIEH ?.;x.. 1. (eegpursat
aaeyiia Ao cq11 A o pasnbas T
an

" L = L
JasEAae oL/

b e O A

\ + Al

Appqedeasinmig

anas 3 aeand i 1 43 68
E.i.wi!fﬂuﬁiﬁg?ng

g

B Oy T Or.rr.-r

I . &mmiﬁ

| e et g e e ek

|

1

1

_ +@
1 A g,

L

" IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII g s 2

O sl 133 0 SALNINE puR Liaeba | Ayl
07 0y wogrTstfio Segsinbug sy TREE T,

Tl

nogmrgest = maddnng

iy gy yoeumsag dig W

_apueyuah = s6uey Jnteery
b = hgqude s i0m3q

st < gogidag.ug

i w.ll.

Figure 30. Top-Level View of Final CDIP Process Model (Left Half)

73

However, model development was an iterative process. By taking advantage of
our chosen modeling tool’s code generation capability and inherent semantic compliance
checking routines, we were able to use a build-and-check approach to iteratively
constructing the model. The CDIP is a stepwise design, lending itself to building and
testing in sections. Throughout model development and with the addition of each new
step we take two actions designed to ensure the model adheres to the underlying rules for
semantic correctness: (i) Use the “Diagram/Validate” menu option to initiate
StateRover’s validation routine and reveal detected errors and (ii) initiate the code
generation process. As detailed in Chapter Il1, diagram validation and code generation
provide an end-to-end syntactic and semantic check of the model and identify errors.
Multiple types of errors could be detected through this process such as mistakes made by
the stakeholders in the formulation of the natural language representations of the process
and its requirements which get built into the model by the process engineer, errors by the
process engineer when translating the natural language into the model and its assertions,

or mistakes by the process engineer when creating the model (e.g., sink states, loops).

As shown in Figure 31, we initially constructed Steps 0, 1, 2, and a placeholder
coarse-state for Step 3 (outlined in green). The visual switch transition [true] from
bEntOrCentCapability to Step2 - Process_Request will go to Step 4A -
Designate_Enterprise_Service in the final version of the model. However, in order to
pass the syntactic check for both true and false transitions from a visual switch we
temporarily route the [true] transition (outlined in red) to Step2 — Process_Request as
shown in Figure 31. On the right hand side of state Steps 0 1 we positioned a
placeholder thread, named assertion_thread, which will contain the embedded assertion

to be placed later in the modeling process.

74

._DOJml

On-Entry/bE:DoD = genRand]
bEntOrCentCapability = genf o TS wep———
iClassOfChange = genRandin

blnitéppeal = genRandBoal()
// bCORF_Proceed and bCDR

S

S startll/ Commeant/Requasting organization decuments C0

request and submits to local approval authority.

(O seeps.0.2

B e 1 Flsetionthiesd |
T 2 |

--Local_Authority_Reviey | mw
> (O stepd--Lacal Autharity_Review - |
| I
| I
| I
| I
Requestor obtains approval autherity signatures on CD |
request and submits approved CORF to Agency/Senvice L ’ ,

€0 Office,

We use a compound state
araund Step: 0 and 1 so that we
can apply assertions to just these
two steps in the process.

" LAA Rejec
// “ LAA Accept/

or e = N
Qe COR Pracessng *00-Fe
» = E— *___hosupL--Amhouze,Requez:

On-Entry/

Requestor's Agency/Service CD Office reviews and validates
CORF, assesses type of CO needed, and prioritizes CD request

o e e AR -
1R frm_Step3-1 bisDoD " [falsel BENtOFC entCapability
Deese/ls the requestor a DaD component? ==

Desc/Does the requested CD capability already exist as ¢

o, [true)/
i’ . [falfe)s
o [truel/ * _-—_____‘_O Step3--Community_Approval_via_CDRE

o Ty e (O Stepl--Process_Request

Figure 31. CDIP Steps 0 - 3 Top-level View During Model Development

Next, we constructed the detailed view of Step 3 (Figure 32). The capability to
display Step 3’s single coarse-state placeholder on the diagram of Figure 31 and expand
that view as shown in Figure 32, demonstrates one of the benefits of hierarchy, that is,
adjusting the depth and complexity of the view as needed. Step 3 is characterized by a
number of questions that must be answered in order to properly route a CDS request into

the appropriate path for the next step of the process.

75

Step) Commisesty Approval via CORB

Figure 32. Step 3-Community_Approval_Via_CDRB

The three visual switches on the right hand side of Figure 32 represent human
decisions that determine whether: (i) the requested capability already exist within the
inventory; (ii) an existing capability can be modified to meet the stated requirement; or
(iii) authority and funding for development of a new capability is approved in order to
meet the requirements of the CDS request. Depending on the answer to each of these
questions (i.e., true or false) the process will transition to the appropriate section of Step 4
as designated on the far right hand side of Figure 32 by the off-page references
to_Step4B, to_Step4C, and to_Step4D. If it is determined that there is no way to proceed
forward with developing or acquiring the requested CDS capability then the process
transitions back to the top-level statechart via Reassess_return_Step_1-1.

After constructing Step_3 we once again run the validation and code generation
routines to iteratively ensure the model is semantically and syntactically correct. We do

this at each stage of model development.

76

3 O Stept e Ser
Bt Shegk-7 g Srepd
- .. e ./

(B e Shep.to.Snepth et — »

—_—

D =1 g Capabibey o ""i‘l ; Steph_StepT-dmplement_and_S%e_Securty_Testing
e — sitian b
'Bf'm_% 12
5o stegt y S2epts

(Bt Stepa o StepdD () steptt--tiew Capabisty [SET

—_— —

Figure 33. CDIP Top-level Development of Steps 4, 5, and 6/7

The top-level view of Step 4(a, b, c, d), Step 5, and Step 6/7 is shown in Figure
33. Again we use coarse states for those steps that will be further articulated as sub-
processes Step 5, Step 6/7, and Step 8. The detailed view for each of these steps is shown

in Figure 34, Figure 35, and Figure 36, respectively.

7

Step 5 -- Certification Test Local variables*/

// We gentrate random boolean values for each variable below
boolean bProceedFwd;
boolean bAddToBaseline;

IO Security_Test

On-Entry/bPracedFuwd = genRandBa

bAddToBazeline

(Jnd Add to Baseline

fff

Figure 34. Step 5 — Certification Test

In Step 5 — Certification Test there are two statechart threads. This construct, in
conjunction with the transition connector artifact (outlined in red in Figure 34) permits
the process engineer to enable interaction and transitions between concurrent activities
within a process. In this case, after security testing is complete and a decision has been
made to proceed forward with implementing and site testing a CDS, the process also calls
for a review of the system to decide if it should be added to the CDS baseline.

78

Steps 6 and 7 -- Implement and Perform Site Security Testing

O Stepb_and_Step?

.*O StepG--Implement

On-Entry/bSTE_Successful :
System.out.printIn{"Enterin

bSTE_Successful
0‘ Security_Test

\.‘ [false)/

N
00 Limited_Functionality_Testing s [truel/

O to_Stepl0
O to_StepB

@ to_Step8_frm_

B to_step1 fm_Steps-1

Local Variable®/
[/ We generate random boolean values for each variable below

boolean bSTE_Successful;

Figure 35. Step 6/7 — Implement and Perform Site Security Testing

79

SRRl R e Lt Kl ff We generate random boolean values for each

variahle below

boolean bAccredCD;

Ot

. N Review

On-Entry/bAccredCD = genRandBooli();
System.out.printin("Entering Step 8");

v

bAccredCD

\q [truel/
., [false)/
O to_Stepd

Stop

@ to_Stepd frm_Stepé

Figure 36. Step 8 — Accreditation Decision

After the construction of each step we validate and generate code to ensure that
the model is error-free. If the model is not error-free, the process engineer makes
corrections as required and then validates the model and generates code again. This

process continues until each new section of the model is error-free.

80

(& fim_Steph_to_Steps

,,,,,,,,,,,,,,,,,,,,,,,

Figure 37. CDIP Top-level View Steps 9, 10

Next, we constructed the final portion of the top-level model, including Step 9 and
Step 10 (see Figure 37). From a process engineering perspective, we made a design
decision to place Step 9 in the top-level of the model. This helps demonstrate the
flexibility and scalability of the modeling approach. If placing Steps 9 and 10 in the top-
level had significantly increased the difficulty of understanding the model or following its
flow then we would have been able to represent it as a coarse state at the top-level and
fully articulate it in a separate substatechart as we did for Steps 3, 5, 6/7, and 8. On the
right hand side of state Step 9 — Operate_and_Monitor we positioned a placeholder
thread, named Op_Mon_assert_thread that will contain the embedded assertion to be

placed later in the modeling process.

4. Construct Statechart Assertions

In this section we show two embedded statechart assertions, each designed to
model and enforce a different natural language requirement. This demonstrates the
technical feasibility of applying statechart embedded assertions to the type of partially
automated human-based C&A processes modeled with our approach.

81

The statechart assertion of Figure 38 is a formal specification of the natural
language requirement R1: Local approval authority/authorities must ensure that there is

a valid operational need for CDS.

Ensure that a system, once rejected by the local
approval authority, can't be accepted by the local CD
office. In other words, the assertion should fail after

rejection by LAA and acceptance by LCDO.

it

On-Entry/// System.out.printin("CDIP_AssertionStatechartl now active.")]
COn-Exit/// System.out.printin("Exiting CDIP_AssertionStatechartl.");

7 CDS Rejected

™, LAA Reject{]/
™, LCDO_Reject[]/

&Asseltion_Fail
OS_2 0Stnp

r On-Entry/bSuccess = false;

System.err.printin("Step 0/1 assertion failed.");

“ LCDO_Accept]]/

Figure 38. Statechart Assertion for Requirement R1

The statechart assertion of Figure 39 is a formal specification of the natural
language requirement R2: the CDS implementation must remain secure during the

““operate and monitor™ phase of its lifecycle.

82

Runtime monitering of security state of system. If CDSis
determined to be non-secure, bSuccess is set to false and
the assertion fails. Enfarces the natural language
requirement:

R2: the CDS implementation must remain secure during
the "operate and monitor" phase of its lifecycle

Omit

\4 SysSecure[]/

\q SysNotSecure[]/

OMonitoring_FaiIure

On-Entry/bSuccess = false;
Systerm.err.printIn(" System found MOT !

< ,om

Figure 39. Statechart Assertion for Requirement R2

Validating Statechart Assertions

As described in Section 111.C.4.b, we use a pattern-based testing
methodology to help build a body of evidence that our assertions correctly represent the

intended behaviors. Figure 40 shows an example of a testing scenario for the assertion of

Figure 38 to test the obvious success pattern.

Timeline Segment from 0 to 0

LAA Reject() LCDO_Reject()

|

0 0

.

Time

Figure 40. Timeline Diagram for “obvious success” Assertion Test Scenario

83

This is a trivial case but important not to overlook. Using this
methodology, on several occasions throughout the development process we found the
need to make corrections based on test results from pattern-based testing scenarios. For
example, in the statechart assertion of Figure 38 we initially reversed the placement of
the LCDO_Reject() and LCDO_Accept() events on their respective transitions. The
trivial obvious success based test pattern revealed this error, demonstrating the value of

exposing process models to a wide range of test scenarios from trivial to complex.

5. Embed Assertions in Process Model

In the next phase of our process modeling approach we embed the statechart
assertions into the process model. As discussed in Section 111.C.5 of this document, the
process engineer places embedded statechart assertions within the model based on the

desired scope of the assertion.

The statechart assertion of Figure 41 is only applicable to activity modeled in
state Steps_0_1; therefore, to keep it appropriately scoped we have embedded it in a

thread via the substatechart artifact of our chosen modeling tool as shown in Figure 38.

O Steps_0_1

Req obtains app I autherity sig on CD
request and submits approved CDRF to Agency/Service

I
|
|
|
I
|
|
I
CD Office, e

‘We use a compound state
around Steps 0 and 1 so that we
can apply assertions to just these

\Q LAA Reje twao steps in the process.

\q LAA Accept
6 T:‘nﬁinlfq;CDliF_PmmsinE“ LCDO Reject[}f

.‘___\ O Stepl--Authorize_Request

On-Entry/

Requestor's Agency/Service CD Office reviews and validates
CDRF, assesses type of CD needed, and prioritizes CD request.

Figure 41. Steps_0_1 with Embedded Statechart Assertion
84

The statechart assertion for R2, shown in Figure 39, is only applicable to the
activities and events occurring in Step 9 so it has been embedded within a thread (see

Figure 42) of this state to maintain the appropriate scope.

6 frm_stepd to_Steps

v

() m_seeps.to_seep1o B fm Step7 to_Stepli

Figure 42. Step 9—Operate_and_Monitor — with Embedded Assertion

6. V&YV Process Model
a. Validation

In the validation component of our modeling approach, the process
engineer presents the finalized model to process stakeholders to ensure the model meets
the expectations and requirements of stakeholders. This interaction is depicted in Figure
6 by the dashed line from V&V Process to Process Stakeholder Expectations. It
represents a key portion of the feedback loop with stakeholders and facilitates validation
of the process model. For the purposes of demonstrating the feasibility of this component
of our modeling approach, we worked directly with the UCDMO to ensure the completed
process model met their expectations. We presented diagrams of our formal model, like
those presented in this chapter, and discussed the translation process from UCDMO

supplied process documentation to the process model. Through informal discussion we

85

asked questions about components of the model to ensure that we fully understood and
had correctly translated stakeholder intent and requirements into the process model. The
UCDMO personnel asked questions such as inquiring how the concurrent activities in
Step 5 would be handled by our modeling approach and whether requirements
enforcement through assertions could be designed into a long-term process monitoring
system. Long-term process monitoring is an open research question that we propose as

future work in Chapter V of this document.

b. Verification — Manual Testing

For manual testing, the process engineer writes Java-based test scripts that
enact the scenarios he desires to test. Figure 43 shows a manually generated test case just
after a test run with a failed assertion. The green outline contains commands used to
initiate events and set variables in the process model being tested. Our chosen modeling
software provides two types of feedback from the testing process. The red outline shows
messages from the executing model and in this case shows the red status message,
“System found NOT SECURE, take corrective action,” which is generated by the
statechart assertion CDIP_OP_Mon_Assertion_Statechart upon assertion failure. The
blue outline shows JUnit reporting on failed assertions. This type of testing and the
associated status messages from the model’s embedded statechart assertions and JUnit
demonstrate the means by which we are able to ensure process requirements, represented

by statechart assertions, are enforced at runtime.

86

2jave | FP COP_0P_Mon_Assertion | dagnm B COP_ hart_duagam

Wie 2 @8 @ ¥ae

& Jevadoc). Declaution | @) Exrox Log | B Console 15 . 5 Proguess ® 5| b
] C:\Program Fles 80]\laeljebie favam:re [Ape 19, 2012 110848 PAA)

B TestCOP1 s
0 testiaec TReventDispatcher (8421 5)

Figure 43. Manual Testing Example — Failed Assertion

Figure 44 shows a similar test scenario but this one is set up to ensure the
embedded assertion of Figure 39 succeeds when we expect it to. In this case, we have
removed the line CDIP_Test.SysNotSecure(); so the commands in the green outlined area
do not drive the statechart assertion, CDIP_OP_Mon_Assertion_Statechart, to a failure
condition. Since the assertion did not fail, the red outlined area does not show a failure
message from the statechart assertion. The blue outlined area has a green bar, indicating
that no assertions failed.

87

B ichan oo i PRI
e e Sowoe Relegor heegeon Sewck Boject B fimdos g

o e e T B = (= - B % scuenty 3
B 5P (D 0P Mo fssvtoen, Sirteihart dabrihurt dugarn 5 CDP_Aisrin et barilshateshart_debgrarn

]

Figure 44. Manual Testing Example — Successful Assertion

The test cases we have shown demonstrate one of the methods by which
we ensure that a process model behaves exactly as expected under specific conditions.

The other method is through automated testing via runtime execution monitoring.

C. Verification — Runtime Execution Monitoring

Runtime execution monitoring provides the process engineer with a means
of exploring the effect of numerous input sequences on the process model during
automated testing. The process engineer is able to adjust test parameters such as number
of tests, test length, and number of permissible loops, in addition to using the information
from testing to better understand, debug, maintain, and communicate with other

engineers, the users, and the stakeholders about a process model.

Figure 45 and Figure 46 show a portion of the final results of two WTG
tests runs on the CDIP process model. In this case, we set the number of tests to 50 and
we are provided with feedback from the model (e.g., the output of printin() statements

embedded in the model), a listing of states within the model that were not entered during

88

the test run, and a specific listing of which tests encountered one or more failed assertions
(i.e., “47-failed tests” in Figure 45 and Figure 46). During automated testing with a large
number of test runs, we expect most of the tests to have failed assertions since the WTG
explores the possible paths for given set of inputs. Depending on what we are attempting
to test in an automated test run, it may or may not be acceptable to have states not visited
during test. For instance, if we wish to determine if the embedded statechart assertions
fail and succeed for a given set of events and variables we may be able to accomplish this
without visiting all states. If we wish to ensure that all states of the model are reachable
from an input sequence then we would likely increase the number of test runs to ensure

enough input sequences are presented to the executing model to fully visit all states.

CDIP State visitation coverage:

State Step4D--New_Capability not visited!
State Stepl@--Appellate_Process not visited!
State to_Stepld not visited!

State to_Stepl® not visited!

State bInitAppeal not visited!

State 0,99 not visited!

State 1,14 not visited!

State Init not visited!

State Add_CD_System_to_CD_Baseline not visited!
State 2,24 not visited!

State 3,8 not visited!

State Step5--Certification_Test not visited!

Assertion coverage:
Assertions were touched in 31.564245818055862% of all cycles.
Assertions were touched in 180.0% of all runs.

47-failed 11 21 31 41
tests (seed 12 22 32 42
numbers) : 13 23 33 43
3 14 24 34 44
5 15 25 35 45
6 16 26 36 46
7 17 27 37 a7
8 18 28 38 48
E] 19 29 39 49
16 20 30 48 50

Failed assertions:
CDIP_AssertionStatechartl
CDIP_OP_Mon_Assertion_Statechart

Figure 45. CDIP Test Results Example 1

89

CDIP State visitation coverage:

State Step4D--New Capability not visited!

State Reassess CDRF not visited!

State bNewCapability not visited!

State to Step8 not visited!

State to Step6 Step7 not visited!

State 9,99 not visited!

State Step3 not visited!

State 1,14 not visited!

State End_Add to Baseline not visited!

State Add_CD _System to CD Baseline not visited!
State Do _Not Add CD System to Baseline not visited!
State bAddToBaseline not visited!

State 2,24 not visited!

State 3,8 not visited!

State Step5--Certification Test not visited!

Assertion coverage:
Assertions were touched in 30.144927536231886% of all cycles.
Assertions were touched in 186.6% of all runs.

48-failed 11 22 33 44
tests (seed 12 23 34 45
numbers): 13 24 35 46
3 14 25 36 47
4 15 26 37 43
5 16 27 38 49
6 17 28 39 58
7 18 29 40
8 19 30 41
9 20 31 42
10 21 32 43

Failed assertions:
CDIP AssertionStatechartl
CDIP_OP Mon_ Assertion Statechart

Figure 46. CDIP Test Results Example 2

Figure 47 shows a portion of the statechart animation results produced
during the test run of Figure 45. During model development, we use the textual and
graphical feedback to debug the model and to ensure that the model behaves as expected

under a wide variety of input scenarios.

90

Controller restarted
Animating state T_4

iClussOfChange — = = G
_/,.-4 BT td r) Steph_Stap?--lmplement _and_Sie_Security 1 qﬂ.n.]l 1Rt Steg te_Shepld @M.W_w_ﬂwlﬂ

T Y

btigpel
Diese/Shoud an appesl be initial

— . o B
o) SeeptCeni ification_Test " Halsel (D zepan--2ppalista Procass
» Comvirna sppelute pans [Sanior ik Bxacutivs, Fsg Pansd TGB)
L b \

COIP_High Level . Shepd | StepS | StepS-T | Stepl

Figure 47. Graphic Feedback for CDIP Test Results Example 2

Visual test feedback helps the process engineer to better understand,
develop, debug, and maintain the type of C&A processes we are interested in modeling.
In addition, because visual representations are generally easier for humans to understand,
they facilitate communication about the process under evaluation among users,

stakeholders, and process engineers.

Table 6. Runtime Execution Monitoring Data Collection

Test Run #

Description of Attributes 1 5 3 4
Number of tests per run 5 25 50 100
Failed assertions
All states visited | O O O
Time to complete test run 15.9s 88.2s 144.2s 346.5s

91

As described in Section 111.C.6.c, the data shown in Table 6 provided a
means of comparing state visitation coverage and processing time across test runs. For
this 100-test run the single flowchart box Do_Not_Add_CD_System_to_Baseline was the
only state/flowchart box not visited. This prompted us to go back and review that portion
of the model to ensure the results didn’t indicate a problem with the model. In this case,
the location of the Do_Not_Add_CD_System_to_Baseline flowchart box was such that
the results made sense due to the location of the box relative to the flow of the model

during automated testing.

B. CROSS DOMAIN SOLUTION WORKFLOW PROCESS
1. Process Selection

The CDS Workflow replaced the UCDMO’s CDIP with the former representing a
process-based initiative to federate the request, reuse, development, implementation, and
C&A of cross domain solutions. The CDS Workflow is a more complex process than its
predecessor with five major process blocks and four levels of hierarchy. As the successor
to the CDIP, this is now the process by which designated authorities such as the Cross
Domain Resolution Board (CDRB) decide whether to allow a given to CDS operate.

2. Process Analysis

In an effort to better document the CDS Workflow process, the UCDMO captured
elements of it as UML use case (see Figure 48) and activity diagrams (see Figure 49)
developed in Rational Rose Modeler>. The use case and activity diagrams were a starting
point for analyzing and understanding the process, which facilitated the analysis phase of

our modeling approach.

5 Rational Rose is a commercial UML modeling tool developed by IBM. Additional information is
available at http://www-01.ibm.com/software/awdtools/developer/rose/modeler/.

92

[SHome]

Use Case Diagram: CDS Workflow / Usage Patterns

COR s Booras

Commted- 25 JUL B4

Modifwed: 19 AUG 38
Primary Pattern

Valdated Reguest Approval fo Connect for Tesfing

) L) L) '

“ s ~ L SR et Initiate Request
Imitiabs Reques! Process Requast Implement CDS Oparate & Monilot {]
o e 38 A o Proceme C24 acums e o S 4 v €24 s
~ Requesior
P o
H)} £y
T M
UCDMO Worklow Portal CDS Wordlow . —,
Alternative Patterns Lo
Walidator
~=__CO3 Resolution
__ Vaiidated Reguest - e == . -
== = e rocess uest
) () (D)
p TR L Reclams he COS Deciaion e P
Indtiate Requesi Froces s Request ™. Arbitrate Dispuie i } -
oD n d o8 A . anm 2248 S
eSS S o B CE8 At . e E T Valigator Lo
Appvad b Connect for Testing ™~ Approvai fo Connact e B
Fe g Sghition Provider
Goo £
R N
Implement COS Operaie & Mondor 4B £ £
H F—_t
iy vt 04 i Ogmile: | Mhiror ST, A ! A

UCDMO Wididow Portal COS Workffeww System Engineer

—
... New CD Basaline Solution 1
- o iz
e VaNatedRequest — o T P Accreditor
{ {) {
‘%_le ._____.f: Requirements Can' be Met -.____',/'J
initiste Reguest Process Request_ Design & Develop Gap Solulion
o mtEm T35 Secuett e Bipcewt S8 Mate : mon Deagr L Dewes Sa Souto-
Apgroval fo Connect for Testing ™ Implement COS

__ Approval io Connec! iy

N —— -
Implement COS Oparate & Monibor
e vt C08 o ot i gy (D% =t
Selulion Provides
£ e #T,
Hi) &, i)
N s, N
UCOMO Workliow Portal COS WorkSow-., Actrediing
B
! }

\ Secunty Test Team

LW
System Engineer

sub-processes had been documented in activity diagrams.

Figure 48. CDS Use Case Diagrams

The activity diagram shown in Figure 49 is for a sub-process of the larger CDS

Workflow process. Activity diagrams are UML artifacts and the process of translating
them is generally straightforward since activity diagrams can be directly translated to
statecharts (Bruegge and Dutoit 2004, 62-67). Each activity diagram represents a sub-
process within the overall CDS Workflow. Thus one of the challenges was to develop an
understanding of how the different activity diagrams related to each other in terms of
processes, sub-processes, and sequencing in order to provide us with the necessary
information to build a model reflective of the actual CDS Workflow. Most of the CDS

93

However, the only

documentation for the “Operate and Monitor” sub-process was a single point on the use
case diagrams of Figure 48. This prompted us to hold further discussions with the
UCDMO representatives in order to determine the flow, elements, and desired behaviors
of this sub-process. This demonstrates one of the challenges of applying formal methods

tools and technique to processes operating in real-world environments.

The use case diagrams of Figure 48 were particularly helpful for developing the

proper sequencing of sub-processes within the overall CDS Workflow.

©D Reequsstor : Requestor CD Officer : Vadstor

) COR Amie Brown
Start Created: 28 JUL 08,

Modified: 04 SEF 08
{ Draft Mission Meed, and Impsct if
(\ i not Filled
K

Eﬁammz Impact Levels [Cenfidentiality, Integri

Avilability)

Submit for CDO
Assessment

@_Eu To Creste Metwork Cannecticn Mew Network Connection Required?
Yes

Submit for GO System
Engineer Assessment
@ 5o fo Frocess Request

Figure 49. Activity Diagram for Sub-Process Titled “Initiate Regest”

As prescribed by our process modeling approach, we identified individual threads,
decision points, and key elements for translation to the type of statechart artifacts used
when building StateRover models (e.g., states, visual switches).

a. Threads

The CDS Workflow is a complex process with several sub-processes that
have concurrent activities occurring. As discussed in Section Il1l.A.a, we model

concurrent activity using the statechart thread construct.

94

The vertical or horizontal parallel lines in an activity diagram denote
swimlanes which provide a way to group activities performed by the same actor or to
group activities in a single thread (Ambler 2005). We observed that in the UCDMO
diagrams, groups of related activities have been grouped together within swimlanes, with
some of these activities happening concurrently. We translated the swimlanes in each
activity diagram to threads within appropriate states in the process model.

Using this approach, the activity diagram of Figure 50 shows two separate

sets of activity. This will be modeled with two separate threads.

CD Requestor : Requestor CD Officer : Validator

Start
Elaborate

Draft Mission Need, and Impact if
Operational Requirement not Filled
i

Detemming Impact Levels (Confidentiality,
Integrity, Availability)

State Technical
Requirements

Submit for CDO Review Reques (+)
Assessment .

Requirements
alidated

@ﬁo To Create Network Connection New Metwork Connection Required
Yes

No

Submit for CD System
Enginger Asss sment

@ Go to Poeess Request

Figure 50. Initiate Request Activity Diagram

On the right hand side of Figure 50, Review Request (+) represents the
sub-process shown in Figure 51. This activity diagram uses horizontal swimlanes to
denote grouped activities; however, concurrent activities are taking place within each set

of swimlanes. In this case, we model the activities within each set of swimlanes in a

95

single state and use three threads and four threads for the top and bottom sets of

swimlanes, respectively, to separate concurrent activity.

CD Offica : Vdidator

. Start

Review Reques for
Completeness

All Data Entered No

I Query
Regueder

Yes L
Validate Operational Validate Impact to the Mission validate Impact
Requirement / Mission Ciiticality Requirement if not Filled (Confidentiality, Integrity, ...

L

lhvalid Request
%Mda ted No @

Requirement

Verfy Data Types .
and Protocols

Verify Data Verify
Classification Throughput

Technical
formetion Vernfied

Yes
Review Conplete

Figure 51. Review Request Activity Diagram

No

The Process CDS Request activity diagram of Figure 52 shows that
processing a CDS request involves four separate sets of activities. We model this with

four separate threads.

96

(3% wmwn e aeeRs 500) [EET= N
ey 0o BepuLAN: Do EmEE waAnTY

o @) I Re—
R e e T o

IR 47V SEIEEY B IO 0 Ol 1013 BORIMOEO0 505
OB I 21 990 00 DU PR EST RSN FREY

T

ECETErT)
3 Dot 10 memEEy

oumy = DusEs aEw
U L B BAED R0 W A moL P borEmaQIWnS

Bz a3 L
cazmeg 3 Eupag

oza s 1Ey
o3 uommaamy

A0 £02 %0 w0 pose P
B Buim By S

EPRURRS TR RS N FRERIEY
DU 305 I 3 NERID PR DIOUSSY 3

{

PRI DN SDAS TR SRR SO TY SSODNS SR | ISR 0D

Figure 52. Process CDS Request Activity Diagram
97

sz=n

ot ssmoi ot 00 @)

PR ——

[BuEd
Bel3 919-NSIQ

Senss| BuiEw=sY
40 NRYOd JsEntEy

|S1u=q 10y ucsERY
Ewnaog psuuay
o3 [mrauddy

BuliE i 1150 (6a1UGaa |

7 Bunswmng TN

o0eH SOUPLE ¥

00 PIEpOn #oiSY

soppas : BINVED

IE0L ;Epdn

sesuBuz wsgals | N3 EALUL 0D

Suswaanbsisy siecges
1 SSPIACIG UOIINICS WM WIS,

sinssy Bunss | wswinoag

Bupsay ang

Ueia BunssL
2us s

3ITLS

E7Y

T
=pig U=ig

UonErUswaIdw]

o nmmmmuJ\

Bupss |

3PS snEg

funosg sulyG,

Eidle]

paunbay mﬁuAeV

Bupss | uoisssiBay pue ‘Buyss | Aunosg

el unosy

ssdojanag 'Buyss) [Fucpung pue wswdorsn:

wes] j55 1 pUE ‘UOHELUSWSIAW]
qwsudo|Erag SINpIIES

TswdoEAea
o) qUBWSINESY P3|IEST S

SieauoD Aunae g Aq pesssippe
S311)1g BsBUINA 104 SUOHEBIM UYS

fiddy 1\ sicquc) Runoss

painbay PUE S1yoid SOD OF RSy

UopE0qE(3 SUBWEANDbaY
0y sysenbay pElLOY

Implement CDS Request Activity Diagram

igure 53.

F

98

Implementing a CDS has five separate sets of activity occurring, as shown
in Figure 53. We model this with five separate threads.

b. Decision Points

Next, we examine the CDS Workflow process to determine decision
points and use Table 7 to manage and track them.

Table 7. CDS Workflow Decision Points
Description Variable Name Possible In
Values Model

Decide whether new network bNewNetConnectRqgrd True, false
connection is required to satisfy CDS
request.
Did CDS requestor enter all necessary bAllDataEntered True, false
data on CDS request?
Is CDS requirement valid (CD Officer bValidatedRgrmt True, false
Validator)?
Has all technical information on CDS bTechInfoVerified
request been verified?
Decide whether the “best-fit” CDS bCanMeetReq True, false
meets the requested requirement.
Does the “best-fit” CDS require bisModRqrd True, false
modification to meet requirements?
Does CDS decision-making body agree bAgreeRecommFind True, false
with recommendations and findings?
Does CD Officer Validator accept bAcceptRes True, false
recommended issue resolution?
Can threshold requirements be met with bThrshildRgrmtsMet True, false
proposed configuration?
Do technical issues prevent meeting the bTechlssues True, false
requirement?
After reviewing risk assessment, does bintApprovConnctTstng True, false
CDS have interim approval to connect
for testing?
Avre certification, testing, and evaluation bCTE_Req True, false
required?

99

Description Variable Name Possible In
Values Model
Did CDS pass offline testing? bPassOfflineTest True, false
Is approval granted to connect bApprovetoConnect True, false
implemented CDS to network(s)?
Is CDS outside of risk threshold? bOutsideRiskThresh True, false
C. Layers

The CDS Workflow is composed of processes and sub-processes. Upon
analyzing the process we determined that it would be best to represent the process using
four levels of hierarchy. Each of the “Initiate Request,” “Process Request,” “Implement
CDS,” and “Operate and Monitor” sub-processes were of sufficient complexity to
warrant individual articulation as a nested process at a second level of hierarchy. In
addition, the “Review Request” sub-process of “Initiate Request” was sufficiently

complex for individual articulation at a third level of hierarchy.

3. Construct Process Model

In this section, we bring together the results of process selection an analysis to
articulate the formal process model of the CDS Workflow. The diagram of Figure 54

shows the top-level view of the final process model.

100

e o i 4
- i
Tt ST FAT AL SRR 1L e B A1

-
"

T e

s

e (7]

()

P e =

nabay g) swbimna)

s

Figure 54. Top-level Statechart Model of CDS Workflow Process

101

Throughout model development and with the addition of each new step we
perform two actions designed to ensure the model adheres to the underlying rules for
semantic correctness: (i) Use the “Diagram/Validate” menu option to initiate
StateRover’s validation routine and reveal detected errors (ii) initiate the code generation
process. As detailed in Chapter I11.C, the diagram validation and code generation provide

an end-to-end semantic check of the model and identify errors.

For this process, our analysis indicated that the top-level of the model would be
relatively simple in terms of the number of states and transitions. We initially
constructed the model shown in Figure 55. This portion of the model ended up being

very close to the final top-level view.

102

LM Fresc1n hor bmplemeenag Cros Dremain Salatien) (09

Ty

Figure 55. CDS Workflow Top-level View During Model Development

103

Next, we constructed in turn each of the detail views for the Initiate_Coarse,

Process_Coarse, Implement_Coarse, and OpMon_Coarse states of Figure 55.

The detail view of Initiate_Coarse is shown in Figure 56. The middle thread is a
placeholder for an embedded statechart assertion to be placed later in the modeling
process. Just as occurred when constructing the CDIP process model, we run the
validation and code generation routines at each step of model building to iteratively
ensure the model is semantically and syntactically correct. We do this at each stage of

model development.

Figure 56. Initiate_Coarse

The right hand thread contains a coarse state, Review_Request, the details of
which are shown in Figure 57. This sub-process is fully contained within the
Initiate_Coarse state and therefore decomposes to the third level of hierarchy. We
discussed complexity and layering in Chapter Il of this document. Modeling of the
second and third levels of hierarchy in this manner is an example of how we are able to
drill down to successively finer levels of detail within the process model in order to deal

with complexity.

104

b e

i
1 I
1 i
! [
H I |
“ '
t @]
_ |
_ i |
| o1l

(=]

| i i
| =0 i
] m g }
u... .w m i
i & o | i
e e

' R

i {1

[a 4

| 1 2

" f 1
oo sl

Figure 57. Review_Request

105

Next we constructed the detailed view of state Process_Coarse. This state has
four separate threads, seven decision points, a mix of workflow and statechart elements,
and a number of transitions between the threads. It was the most complex sub-process
that we had modeled. Running the validation and code generation routines was
particularly helpful to ensure the semantic and syntactic correctness as we iteratively built
it. The detailed view of Process_Coarse is shown in Figure 58.

106

»

Figure 58. Process_Coarse
107

The next state modeled was Implement_Coarse. This sub-process has five threads
and four decision points. As with the previous sub-process, our modeling approach of
iterative validation and code generation helped us rapidly construct this portion of the

model with no syntactic or semantic errors. This sub-process is shown in Figure 59.

108

S v

[

Ao

e e]
i
mmowg ||
e i i i
At [
i
f—)
ity)
! i A B K
!
; s
i
et s e '
i] Rk it
| wewonOa— @) ey v
—— ¥
| i epmr——
i

[——

Implement_Coarse
109

Figure 59.

The final detail view developed was for OpMon_Coarse sub-process. The
detailed view of OpMon_Coarse is shown in Figure 60.

@Reﬂ'oOpMon... @Reﬂ'nOpMomt
OOp_Monitor
e ———— == e
i....'.“ Main I i Assertion |
| i
I |
| by I
| b |
| b I
I |
I |
! I
| | I |
1 | I |
1 | | |
1 | I 1
1 i I |
- e '
1 . OContinucus_Monitoring \q SysNotSecure[]/ 1 I |
I |
| = \..ﬁTj 1 | |
I — I
1 | I |
| | I |
1 | I |
1 | I |
1 I |
S I
1 -, SysSecure[)/ 1 | |
! I
I I
! I
! I
I I
e e o il

Figure 60. OpMon_Coarse

We intend to embed a statechart assertion in OpMon_Coarse later in the modeling
process so we have positioned a placeholder thread to be filled in during the “Embed
Assertions in Process Model” phase of our modeling approach.

4. Construct Statechart assertions

In this section we show three embedded assertions statecharts, each designed to
model and enforce a different natural language requirement. This demonstrates the
technical feasibility of applying statechart embedded assertions to the type of partially

automated human-based C&A processes modeled with our approach.
110

The statechart assertion of Figure 61 is a formal specification of the natural
language requirement R1: Each of the impact levels (Confidentiality, Integrity,

Availability) must be set to one of the following: low, moderate, high.

This assertion is designed to test the
following reguirement:
R:Each of the impact levels
(Confidentiality, Integrity, Availability)
must be set to one of the following: lo...

&A;:ert_Fail
“syprirpd? FlowchartEntered("Levels_MNot_Set")[]/
OStalt a P Y -7 On-Entry/bSuccess = false;
System.er.printin("One or more impact levels 9T_1
On-Entry/System.out.printin("Impact

Figure 61. Statechart Assertion for Requirement R1

The statechart assertion of Figure 62 is a formal specification of the natural
language requirement R2: Review of the CDS request must be completed within 100 time
units of the time review begins. This statechart assertion demonstrates the ability to apply

enforceable temporal constraints to our model.

. This assertion is designed to test the following requirement:
R A review of the CDS request must be completed within 100 time units of
the time review begins.

s primaryEntered(*Review_Request_for_Completeness")[1/

nError

On-Entry/bSuccess = false;

OTlmer System.er.printin("CDSAssertionRequestTiming fa
™, Requirements_Valid[}/

On-Entry/timer.restart(); ™, timeou tFire[])/

/* Local Variables */
static final int T=100;
TRTimeoutSimulatedTime timer = new
TRTimeoutSimulatedTime(T, this);

Figure 62. Statechart Assertion for Requirement R2

111

The statechart assertion of Figure 63 is a formal specification of the natural
language requirement R3: The CDS implementation must remain secure during the

““operate and monitor™” phase of its lifecycle.

This assertion statechart is a formal
specification of the natural language
requirement R: the CDS implementation
must remain secure during the "operate
and monitor” phase of its lifecycle.

0‘ Security_Problem

On-Entry/bSuccess = false;
Systern.err.println("A security problem has beer

Ot

\q SysSecure[]/

Figure 63. Statechart Assertion for Requirement R3

5. Embed Assertions in Process Model

The next step in our process modeling approach is to embed the statechart
assertions into the process model. As discussed in Section 111.C.5 of this document, the
process engineer places embedded statechart assertions within the model based on the

desired scope of the assertion.

The statechart assertion of Figure 64 is only applicable to activity modeled in
state Requestor_Initiate; therefore, to keep it appropriately scoped it is embedded in a
thread within this state via the sub-statechart artifact of our chosen modeling tool as

shown in Figure 65.

112

o) o ey 6 <

ssacny Buzehs 03 >

o

PR

B T,
Fpunie NG

Mipnepsbay ™,

Aapgma g, Jupud N wagss
D33spaa {32 Lperuepgl g1
g

P F e sy D

TP LY (B

."u__wu._.i._Zun

.._uz-u__....._t_tc,auo

WSSO0 T HMGNS 6

Apnwsasanas *,

T ———
§ pagwisoyne sog gfpuenageg | |

..... mambiy 3120, W0

.5.,...?23:3«0 -

L e T
ruen ()

pauibypiean oy K3

Figure 64. State Requestor_Initiate with Embedded Assertion
113

The statechart assertion for R2, shown in Figure 62, is only applicable to the
activities and events occurring in state Assess_Request so it has been embedded within a

thread (see Figure 65) of this state to maintain the appropriate scope.

Figure 65. State Assess_Request with Embedded Statechart Assertion

The statechart assertion for R3, shown in Figure 63, is only applicable to the
activities and events occurring in state Op_Monitor so it has been embedded within a

thread (see Figure 66) of this state to maintain the appropriate scope.

114

@REFFoOpMon... @Reﬂ'aDpMon‘i

O Op_Maonitor

\mTB‘_

k

|

|

|

|

|

|

|

|

|

|

I

|

| . OCcntinuou:_Monitoring \4 SysNotSecure[]/
| —

| -
|

|

|

|

|

| \q SysSecure(]/
|

|

|

|

|

Figure 66. State Op_Monitor with Embedded Statechart Assertion

6. V&YV Process Model
a. Validation

The process engineer presents the finalized model to process stakeholders
to ensure the model meets the expectations and requirements of stakeholders. This
interaction is depicted in Figure 6 by the dashed line from V&V Process to Process
Stakeholder Expectations. It represents a key portion of the feedback loop with
stakeholders and facilitates validation of the process model. For the purposes of
demonstrating the feasibility of this component of our modeling approach, we worked

directly with UCDMO to ensure the completed process model met their expectations.

115

We presented our model to the UCDMO in a similar fashion to what we
described in Section IV.A.6.a for the CDIP. We informally presented diagrams of the
formal model and discussed the translation process from UCDMO supplied process
documentation to the process model. The resulting dialogue provided validation that our
design met stakeholder intent. We used this feedback loop to ensure that the “Operate
and Monitor” component of the model, mentioned in Section IV.A.2 met the UCDMO
expectations. Due to the lack of documentation available for analysis of “Operate and
Monitor” it was particularly helpful to have direct input from the process stakeholders to

improve the process model.

b. Verification — Manual Testing

We use the same process for manual testing as described for the CDIP in
Section IV.A.6.b of this document. Manual testing allows the process engineer to focus
on and test specific scenarios to examine how a given set of variable values, timings, and
events will affect the model during execution. In this section we use manually
generated test cases to demonstrate how statechart assertions embedded in the CDS

Workflow enforce requirements on the process model.

The test case shown in Figure 67 is designed to test the assertion
CheckImpactLevelsAssertion to ensure that the assertion does not fail when it should
succeed. This assertion, shown in Figure 61 is designed enforce the natural language
requirement R1: Each of the impact levels (Confidentiality, Integrity, Availability) must
be set to one of the following: low, moderate, high. In the green outlined area of Figure
67, we assign values of High, High, and Low to the Confidentiality, Availability, and
Integrity impact levels, respectively. In the red outlined area of Figure 67, the message
“Impact Levels Assertion Entered” shows that the assertion was entered while the blue

outlined area shows that no assertions failed during the test run.

116

File Edt Source Refactor Mavigmte Sewch Project Bum Window Help
e @ $-0-%- tue- ®¢- PEAETE -7
3 buckaget 1Tt Typerien| = O

o % SChodeing 5P

dngom [P e .

i sesion, winghspect_ Damo

1 Aascbon Vebidation, dermo

1 AasetonC aficDetector Algorithr

[e—————
0e

oty Chacking

32 CO5 Wediow
B (defoult package)
J) BorderlayoutDemajna

D RadicButionDemejma |
[RadictuticnDemel wa |

- || casw.sTntegueved —- “not_set” || cosw.savatlievel — "nat_set”) {

}else {
s i

]

W P0;
@ CoS Worlow tatechart cdsn.Lev
S COS Worklowstatechart dingrar

& CDSAssetionOpMon tate
S COSAssetionOpMen statechar,

casu.beg
BF COShssertionOphon satechart {

<tesminated> TestCDS

Tining Assertion entered

Tapact Levels Assertion Intered
Assertion entered.

-0 =0 e gy vi 30 stefove0s %, @ Thumbras \

Fnished after 37.326 secands Ll S

Rune 11 B Enors 0 B Faes 0

Fil TetC05 Wodhowlmpactievels

Vietabie Smartiost | 83:32

Figure 67. Successful Manual Test of CheckimpactLevelsAssertion

For those test runs with animation activated, our modeling tool provides

additional visual feedback as shown in Figure 68. In this case the assertion’s failure

criteria were not met so the statechart assertion remained in the Start state throughout the
test run.

& ChecklmpactLevelsAssertion &3 A [DSAssertmnRaqu&T\mmgﬁtﬂtecharﬂ A [DSAssertmnDpMnrq

-

Controller restarted
Animating state: Start
1T dSSETUUN 15 UESIgIED LU LESL e
following requirement:
R: Each of the impact levels

(Confidentiality, Integrity, Availability)
must be set to one of the following: lo...

0. Asszert_Fail

S primanyFlowchartEntered (' Levels_Not_Set")[1/ (|
O Start =H & - ! On-Entry/bSuccess = false;
. System.err.printin("One or more impact levels

On-Entry/System.out. printin("Impact b

ubElementCompartment)

Page_l

Figure 68. Assertion ChecklmpactLevelsAssertion Successful Test Run

117

The next test results show the indicators for a failed test run. In Figure 69,
the green outlined area shows that we set the Integrity impact level to “not_set.” This
caused the ChecklmpactLevelsAssertion embedded assertion to fail and print the status
message “One or more impact levels have not been set.” in the red outlined area and to

throw an AssertionFailedError in the blue outlined area of Figure 69.

FRefactor Mavigate Search Project Run Window Help
& PO EEE-
3 | Tystien| = O|(EB cps)

[P Coshssariont iy P L L e per—p——

public

AWy Gl G E 2T~
25, 312 4200 M)

Figure 69. Failed Manual Test of ChecklmpactLevelsAssertion

In the lower portion of Figure 70, we see a transition from the Start state
to the Assert_Fail flowchart box and on to a terminal state. This occurred because one of
the impact levels was not set in the CDS Workflow model, causing a transition to the
flowchart box Levels Not_Set which is shown by the orange outlined box in the upper

portion of Figure 70.

118

Controller restarted
Anirnating state: Determine_Impact_Levels

I j! 1
| | |
! i]
i || I
] 1l i
i 4 H |
@uriuvium_nm E !
H 1
1]

Comment/Draft mssion need i E E
- : L i
- %. &&n:jethmd_hm-mem | i — ¥

= 1

] Determine Jmpact L 1

On-Entry//f Far sutomated ¢
¥ needs to assagn these valus
JiSyternout pristin{"bMans e
if (thanualTest) | :

#F Ui andomn ﬂl-ﬂ'\,p:‘ # [intmpacilevelsSet == 2|/
in | = genfandlmiy |
it = genRandiat();

int.n = penRandlnt(l

i Systernuout.printin("\nl =

/* Sedect & randiom value for

arfaye et =xl--ﬂ|ﬂmpll‘lLH!|sS:€?=':'.
selected values to sach of the ¥ [ublernantC orrpartrment)
sConfLevel = armConfLevel[l} ¢ Submit_CDO_Assessment

slrteglevel = anintegleveln
sdvailevel = armAvasilevel[n,
/i the #-1hen-eke below ens
/' alaving madel Flow to pr P

R _[leTosa

‘
é D5 Workflow | Initiste COSR_ - Process COSR | Implement_ C0S | Op_Monitor| Reciew_Rgst |

— - aa W L P - — - 3

.
L

o i, COSAssertianRequestTimingStatechart | gy, CDSAssertionOphion

Controller restarted
Anirmating state: T 1

A s s sy 0 s
R Each of the impact levels
!mhgﬂn#m-_n

|} stan i
. — Y On-Eritry/System. cut peintin] Tmpact

A Asert_Fail

FlowchanEntered| Levels Mot _Set”N}
On-Entry/BSuccess = false

Page 1

System.ar.printing” One or mone impact levels \E

Figure 70. Assertion ChecklmpactLevelsAssertion Failed Test Run

When we write manual test cases, we are able to test process flow and

adherence to process requirement written as embedded assertions by specifying events

and setting variables to move through the executing process in a specific way. This

ensures that the model behaves as expected for each test scenario.

119

C. Verification — Runtime Execution Monitoring

In this section we show the results of automated testing of the CDS
Workflow process model. Runtime execution monitoring provides a means of exploring
the effect of numerous input sequences on the process model during automated testing
and verifying that the model behaves as expected across the range of inputs. During
model construction we insert code to print variable values and status messages at runtime.
These messages are delivered throughout execution of each test. This helps us ensure
that the model behaves precisely as specified since we are able to compare variable
values for a test run to the testing results based on those values. An example of this can
be seen in the blue outline of Figure 71. The Confidentiality impact level is “not_set”
which should cause the assertion CheckimpactLevelsAssertion to fail and it does, as we
see from the status message in red “ChecklmpactLevelAssertion: One or more impact

levels have not been set.”

120

blntApproxConnctIstng = true
bIntApprovfonnctIstng = false

Reached a sink configuration; no where to go.
End test #48

Starting test #49 ofS@; seed is 49

Confidentiality level = pot_set

Integrity Level = High

Availability Level = High

CheckImpactlievelsAssertion: One or more impact levels have not been set.

R L bk e L L AATIE s 855 CLOT TaL e,
bvalidatedRormt = true

blechinfoVerified = false

bvalidatedRqrmt = true

blechinfoVerified = true

bhsuletConnactRqrd = false

bCanteetReq = true

bisModRgrd = false

bAgreeRecommEind = false
eq = false

End test #49

Assertion coverage:

Assertions were touched in 16.2085128205128284% of all cycles.
Assertions were touched in 180.0% of all runs.

S@-failed tests (seed numbers):

e 1@ 20 3e
1 11 21 31
2 12 22 32
3 13 23 33
4 14 24 34
s 15 25 3s
6 16 26 36
7 17 27 37
8 18 2B 38
9 19 29 39

Failed assertions:

CheckImpastlew ciion

41
42
43

45
46
47
48
49

Figure 71. WTG Output for 50-Test Run

Depending on our testing goals and the outcome of test runs, we adjust test
parameters such as number of tests, test length, number of permissible loops in order to
ensure all elements that we wish to examine have been tested. The green outline of

Figure 71 shows us that all three of the assertions in our model failed during this 50-test

121

run. We expect this to occur as the WTG explores the execution paths for a large number
of input sequences over the course of fifty tests.

C. KEY LESSONS LEARNED

As we developed the CDIP and CDS Workflow models there were some key
lessons learned that will facilitate the improvement of further research into the modeling

of partially automated human-based security-related processes.

1. Code Generation

The code generation facility turned out to be a key means of ensuring end-to-end
syntactic and semantic consistency of our model. Note that during model development
we do not focus on code generation from the standpoint of creating usable code as would
be the case when developing software-based systems. Instead, we are interested in the
rigorous syntax and semantics checking that is an inherent part of StateRover’s code
generation module. If code generation is unable to complete successfully this equates to
a syntactic or semantic inconsistency with the model and drives the process engineer to

investigate and correct the source of the error before continuing with model development.

2. Source Material

During the “Process Analysis” phase of our modeling approach, the process
engineer develops an understanding of the process under examination based on the
materials provided by the stakeholders of the process. This material may be abundant or
scarce and could include things such as interviews with users or stakeholders, focus
groups, informal diagrams, or semi-formal diagrams. We modeled two processes during
the course of this research. The source material differed significantly between the two
processes and we found in the case of the CDS Workflow that having the UCDMO
provided activity diagrams and use cases facilitated our understanding of model.

If provided a similar set of activity diagrams for any process, it would facilitate an
expeditious analysis of the process. However, the notion of “garbage in, garbage out”

applies here. In other words, if it is the case that either the process diagrams or

122

documentation is inaccurate or incomplete, we believe that analysis could end up taking
longer or result in unfounded conclusions due to the original diagrams leading the
analysis down one or more false paths. Process diagrams are not a requirement for
analysis but instead a facilitator. In the absence of diagrams or other forms of
documentation, the process engineer engaged in formalizing a process is likely to employ
a variety of methods to develop a full understanding of the process such as observation of
the process in action, and interviews with stakeholders. Based on our experience with the
two processes modeled in this work, we suggest that inaccurate, inconsistent, or non-
existent process documentation would significantly increase the process-analysis timeline

due to the need for end-to end-process analysis.

123

THIS PAGE INTENTIONALLY LEFT BLANK

124

V. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
WORK

A CONCLUSIONS

In this research, we demonstrated the development of a systematic approach to
formally modeling human-in-the-loop security analysis and decision-making processes as
well as the use of UML statecharts and statechart assertions for engineering, modeling,

and V&YV of these processes. The contributions described below support this research.

1. Software Engineering

We contributed to software engineering by introducing a novel way for software
to automate a new domain, that being the process-modeling engineering of high-level,
human-based processes. We do this through the generation of an executable process
model and executable assertions. We then use software to enact these executable

representations as a means of process automation.

2. Process-modeling Engineering

We developed a systematic approach to formally modeling, validating and
verifying high-level human-based processes (shown in Figure 72). These processes can
be challenging to model because of hard-to-capture elements such as human decision-
making, sequencing, and concurrent activities. We applied some of the tools and
techniques from software engineering to provide an end-to-end means of modeling and
V&YV of these processes using the same formalism. This provides a framework for the
specification of security processes and computer-assisted V&V of the specifications.

125

Derive Requirements P
—_——_—— Stakeho!der 3 +| Process Analysis Proce‘ss +— Start)
| Expectations Selection N
I
Validate J
Against I
Stakeholder (Legend
requirements {_lt'
) Stakeholder
[RERRREEEE o Feedback
I lterative Validation | €onstruct Constr'uct terative Loop
| Process Assertion Vali dation
| - Model Statecharts _ P::;“
Vali »
|\h a P?(:S::: Validate
T Model No ASSEI‘tIOf‘IS) Merge/Separate
| | . "
[Iterative
erative alidation
| lterat Validation |
| Validation < Model Model |
alidate: alidate
| Validated Ves - Validated '
| Yes |
| p
| l | V&V
: | Process
| '__L;_. Embed Assertionsin | | | Model
| Process Model | ¥
|
I Validate |
| Agamst «— Runtime
Stakeholder +— — — Execution
requi Manual A
quirements . Monitoring
Testing
(Automated
testing)

Figure 72. Statechart-Based Formal Modeling Approach

We developed a set of desirable attributes to guide the choice of a formal
language and associated computer-based tools that would support our modeling
approach. We examined a number of formal languages and tools in the context of these
attributes and showed that UML statecharts and statechart assertions in conjunction with
the tools available for this formal language provide us with the necessary vehicle for
building a formal process model as well as specifying and enforcing requirements on the

model.

Our approach includes development of an executable version of the modeled
process and the process requirements models as statechart assertions. Once developed,
this executable model provides us with a runtime view of the process. We use formal
methods tools and techniques originally designed for the engineering of reactive
hardware and software systems as a means to monitor the process in execution for

126

requirements satisfaction. The addition of runtime monitoring, in conjunction with
embedded statechart-based assertions, offer the process engineer an unprecedented ability
to levy requirements on a human-based process and enforce those requirements while the

process is in execution.

3. Case Studies

We demonstrate the application of our systematic modeling approach through two
case studies. These two cases represent hard process modeling problems and encompass
a large portion of the hard-to-capture elements mentioned above. By automating the
process engineering we can capture and V&V the processes. The two case studies are
based on real-world processes used by the UCDMO for the development,
implementation, and C&A of CDS.

4. Real-world Impact

We provided feedback to the UCDMO on process errors discovered through the
case studies, resulting in corresponding changes to the real-world process for requesting,
developing, implementing, certifying and accrediting cross domain solutions. This
demonstrates how the embedded feedback loop in the process modeling approach can

directly contribute to process engineering and improvement of real-world processes.

B. RECOMMENDATIONS FOR FUTURE WORK

More work is needed to further validate our modeling approach. We have applied
our approach to two processes in the security analysis and decision-making domain and
submit that it would improve process-modeling efforts in other domains. In addition,
there needs to be additional research to enable the long-term runtime monitoring of an
executable process model in direct support of the real-world application of the process.
In other words, it would be desirable to provide the users of the approach with the
capability to execute process models for sufficiently long periods of time such that the
modeled processes terminate naturally (i.e., processes that have a definitive end-point or
product which causes the process to end) or run indefinitely (e.g., safety processes that

involve continuous checking of health and status of the manual and automated functions
127

of a process-control application). Future research is needed on the optimal placement and
use of embedded assertions within a statechart-based formal process model. Follow-on
research also needs to examine additional modeling tool capabilities to facilitate the

modeling of human-in-the-loop processes.

1. Improving Workflows for Surgical Procedures

In this research, we apply the modeling approach to partially automated, human-
based, C&A processes. There are also opportunities in the field of medical workflow

specifications for further validation of our modeling approach.

Since 1993, the DoD has transformed health care delivery in its use of
information technology to automate patient data documentation. The Department uses an
enterprise-wide medical and dental clinical information system that generates, maintains,
and provides 24-hour secure online access to electronic medical records (EMR). This
system of EMRs enhances patient safety for more than nine million beneficiaries, with
“one patient, one record.” It provides a legible and longitudinal clinical record that
includes drug interaction alerts, patient allergy notifications, and wellness reminders to

enhance health care delivery. (Charles, Harmon, and Jordan 2005)

Under the rubric of the Military Health System (MHS), DoD operates state-of-
the-art hospitals and clinics, battlefield, and forward-deployed temporary medical
facilities worldwide. MHS provides care to over 19,000 inpatients and 1.7 million
outpatients each week (Charles, Harmon, and Jordan 2005). The EMR is a primary
enabler for the improvement in safety, effectiveness, and efficiency of healthcare and as a
fully integrated component of the military healthcare paradigm. Through the integration
of Health Information Technology (HIT) such as the EMR, the DoD is searching for
ways to improve the quality and efficiency of care it provides to members of the military.
In addition to improving EMRs, the DoD has specified, using natural language and
simple flowcharts, the process workflows for performing medical procedures. These
procedures, such as surgeries, can be performed manually or semi-automatically and may

involve both human decision-making and robotically controlled elements.

128

Operating Room

Circulating TP-4

~ Nurse do

(Condition |:| Alomic task Entering Count

\/ Matched Matched
N h

(p») Input condition D Composite task Failed:

- Count

Scrub Nurse do

Failed—s»

~
() Ouput condiion Muliple instances Sponges and Entering Count
~ of an atomic task Instruments
Multiple instances -5
of a composite task
Surgery a”’&cr
»[E: XOR:spittask :iD—» XORoin task b Surgeon
Verifies Mark ‘\eé.

—-[H: OR-spiit task ::‘:D—v ORjoin task @ Identify
B eifieve Retrieve Patient
i P Image From N " Information

i — —D remove tokens C%‘EMR VerwfySisdl;rgwcal From C.EMR

- _—/ Retrieve system
. N Information
Symbols Used in YAML** H o From C-EMR
“'\WMP. van der Aalst. et al. 2004. Design and a5 om -
. s Latiia, 142 Za system TP-7
Implerenttion of the YAWL System, In CAISE. Riga, Latis, 142-150. &

Fa,'/@d Remark j Verify
. Surgical Impant(s)
Side Surgeon

L Scrub Nurse Matched
te e 9 ailed
Get New
Impant(s)

Search
Surgical Site
Take another S, Reportin
. Report in % Cancel i
Surgery and " % TP-8 .. 3 Surgical [Wx.,
3 o Surgical Log Scrub Nurse do s B,
Report o ¢ Q \ Exiting Count urgery Log /U/\l:ﬁ
CE) ‘__,__ﬁol
g Circulating gurglcal
Nurse do Count rocess
Exiting Count Sponges and
s
Take X-ray on
Patient body
-®

Continue Surgical Process

Figure 73. Example Surgical Procedure Workflow (From Yu et al. 2011)

Yu, Varga, Wijesekera, Stavrou, and Singhal are investigating the improvement
of surgical procedure workflows (example shown in Figure 73) and surgical electronic
medical records (S-EMR) through the application of use/misuse cases and time-out
points. They describe workflows for surgical procedures that incorporate both EMRs and
more pedestrian means such as paper-based checklists. They discuss the inclusion of
time-out points as a means of reducing injury and casualty rates during surgical
procedures. Time-out points provide a controlled pause in the medical procedure,
affording the surgical team time to check a pre-defined condition before proceeding to
the next step. They propose the architecture shown in Figure 74 for enforcing time-out
points in workflows as a means of ensuring the rigorous application of time-out points
throughout the procedure. (Yu et al. 2011).

129

o

Time-out ’
Timea-out / Point P

Point Spacifiar s Task Library contains all tasks
Manager /. within a workflow. “ task” refers

s 1o any actlivities or actions
User & undertaken by individuals *
I .
¥

‘ Warkflow

C
— - - User

Interface

4

Identify Patient is an example of
Task
= B P Chaiken, Waorkflow in
A White Papar hittpd)
ork comfaricles

For example: Admitting Nurse
“
Task Library
“
Engine o

Time-out Point
Enforceable Workflow-
Based Surgical EMR
System

“,
0
\

.

Patients’
Medical
Racgrds

Clinical |
EMR

Syslem

i
."

Scheduling
Shaats

Figure 74. Time-out Point Enforceable Architecture (From Yu et al. 2011)

Improving safety and reducing error rates in medical procedures is an important
area of research to DoD and to the medical community at large. We propose that future
researchers use DoD medical workflow specifications to further validate our approach to
applying computer-aided formal V&V of process workflows. We also propose that the
runtime execution monitoring of embedded assertions, used as a requirements-
enforcement mechanism in our modeling approach, could be used as the basis for a Time-
out Point Manager (TPM).

2. Runtime Execution Monitoring — Long-term Approach

We demonstrated a process modeling approach that supports V&V of the
modeled process through runtime execution monitoring and the enforcement of
embedded assertions. Further work is needed to support the monitoring and enforcement
of process requirements throughout a process lifecycle. We believe the approach
described in this research could form the basis for an enforcement engine that ensures a
real-world manifestation of the modeled process adheres to process requirements. The
TPM described in the previous section is an example of a requirements enforcement

mechanism that would operate in conjunction with the real-world execution of a process.

130

3. Full-scale Employment of Embedded Assertions

We demonstrated the use of several embedded statechart assertions to model and
enforce process requirements. We believe that many modeled processes would have a
large number of stakeholder requirements, translating to a large number of embedded
assertions in the process model. Future research needs to further examine full-scale
employment of embedded assertions to model and enforce all of these process
requirements. In a full-scale deployment, it would be important to determine a priori
whether the enforcement of embedded assertions introduces a performance penalty and if
so, how much of one. We did not see any appreciable runtime performance penalties
when adding statechart assertions to our models; however, it may be the case that
working with a large number of assertions would deteriorate runtime execution

monitoring performance.

4. Validation Using External Assertions

We explored the use of embedded assertions statecharts as a requirements
enforcement mechanism on models of partially automated human-based security-related
processes. Embedded statecharts assertions, as the name implies, monitor and enforce
“from the inside” of the modeled process. This approach was appropriate to our research
since we modeled both the assertions and process models in the same language, using the

same toolset.

Future research should investigate using external assertions and assertion
repositories as a means of monitoring “from the outside” of the modeled process.
Drusinky introduced the concepts and provided usage examples of external assertion
repositories (Drusinsky et al. 2008; Drusinsky 2011, 58-79). This approach would likely
enable the use of differing tools, techniques, and languages for the process model and the

assertions used to enforce requirements on the model.

5. Additional Modeling Tool Capabilities

The StateRover modeling tool used in this research satisfied the list of minimum
desirable attributes detailed in Section IlIl.A.1. Future research needs to examine

131

continued development of tools to support the modeling of decision-making processes.
In Section 111.C.6.c we discussed data collection and analysis related to runtime execution
modeling. It would have been helpful to have a robust, automated data collection and
reporting mechanism built into the modeling tool to collect data such as the length of
time for each test run, number of assertions that passed and the number that failed in each
test run, and the number of model states not visited. We manually collected this data and

used it to help with the development and debugging of process models.

132

LIST OF REFERENCES

Ambler, Scott W. 2005. The Elements of UML(TM) 2.0 Style. Cambridge University
Press.

Anon. Jobs At Netflix, Inc. http://www.netflix.com/Jobs.

Berry, D M, & J M Wing. 1985. “Specifying and Prototyping: Some Thoughts on Why
They Are Successful.” In Proceedings of the International Joint Conference on
Theory and Practice of Software Development (TAPSOFT) on Formal Methods
and Software, Vol.2: Colloguium on Software Engineering (CSE), 117-128. New
York, NY, USA: Springer-Verlag New York, Inc.
http://dl.acm.org/citation.cfm?id=22263.22271.

Bishop, Matt. 2002. Computer Security: Art and Science. 1st ed. Addison-Wesley
Professional.

Bruegge, Bernd, & Allen H. Dutoit. 2004. Object-oriented software engineering: using
UML, patterns and Java. 2nd ed. Upper Saddle River, NJ: Prentice Hall.

Cardoso, Jorge. 2007. “Complexity Analysis of BPEL Web Processes.” Software
Process: Improvement and Practice 12 (1): 35-49. doi:10.1002/spip.302.

Cardoso, J. Mendling, G. Neumann, & H A Reijers. 2006. “A Discourse on Complexity
of Process Models (Survey Paper).” BPM 2006 Workshops LNCS 4103 4103:
115-126.

Charles, Marie-Jocelyne, Bart J Harmon, & Pamela S Jordan. 2005. Improving Patient
Safety With the Military Electronic Health Record. Rockville, MD: Agency for
Healthcare Research and Quality.
http://www.dtic.mil/docs/citations/ ADA434219.

Clempner, Julio. 2010. “A Hierarchical Decomposition of Decision Process Petri Nets for
Modeling Complex Systems.” International Journal of Applied Mathematics and
Computer Science 20 (2) (June 1): 349-366. doi:10.2478/v10006-010-0026-2.

Committee on National Security Systems. 2006. National Information Assurance
Glossary. http://www.cnss.gov/full-index.html.

Crane, Michelle, and Juergen Dingel. 2007. “UML Vs. Classical Vs. Rhapsody
Statecharts: Not All Models Are Created Equal.” Software and Systems Modeling
6 (4): 415-435.

Denning, Peter J. 1971. “Third Generation Computer Systems.” ACM Computing Surveys
3 (4): 175-216.

133

Van Der Aalst, W. M., & Kees Max Van Hee. 2004. Workflow Management: Models,
Methods, and Systems. MIT Press.

Director of National Intelligence. 2008. Intelligence Community Directive Number 503:
Intelligence Community Information Technology Systems Security Risk
Management Certification and Accreditation.
https://www.intelink.gov/sites/ucdmo.

Dong, Yang, & Zhang Shensheng. 2003. Modeling Workflow Process Models with
Statechart.

Van Dongen, B. F., W. M. P. Van Der Aalst, & H. M. W. Verbeek. 2005. “Verification
of EPCs: Using Reduction Rules and Petri Nets.” In 17th International
Conference on Advanced Information Systems Engineering, 3520:372-386. Porto,
Portugal.

Van Dongen, B. F., & M. H. Jansen-Vullers. 2005. “Verification of SAP Reference
Models.” In 3rd Internaional Conference on Business Process Management,
3649:464-469. Nancy, France.

Drusinsky, D, M Shing, & K. A. Demir. 2007. “Creating and Validating Embedded
Assertion Statecharts.” Distributed Systems Online, IEEE 8 (5): 3-3.

Drusinsky, D. 2006. Modeling and Verification Using UML Statecharts: A Working
Guide to Reactive System Design, Runtime Monitoring and Execution-based
Model Checking. Newnes.
http://isbndb.com/d/book/modeling_and_verification_using_uml_statecharts.

. 2008. “From UML Activity Diagrams to Specification Requirements.” In
Proceedings of the 2008 IEEE International Conference on System of Systems
Engineering. Monterey, CA.

. 2011. Practical UML Based Specification, Validation, and Verification of
Mission Critical Software. Dog Ear Publishing, LLC.

Drusinsky, D., J. B. Michael, T. W. Otani, & Man-Tak Shing. 2008. “Validating UML
Statechart-Based Assertions Libraries for Improved Reliability and Assurance.”
In Proceedings of the Second International Conference on Secure System
Integration and Reliability Improvement, 2008, 47-51.

Drusinsky, D., James B. Michael, & Mantak Shing. 2007. The Three Dimensions of
Formal Validation and Verification of Reactive System Behaviors. Naval
Postgraduate School.

134

Drusinsky, D., & Man-Tak Shing. 2009. “Using UML Statecharts with Knowledge Logic
Guards.” In Proceedings of the 12th International Conference on Model Driven
Engineering Languages and Systems, 586-590. Berlin, Heidelberg: Springer-
Verlag. http://dx.doi.org/10.1007/978-3-642-04425-0_45.

Drusinsky, D., Man-Tak Shing, & K. A Demir. 2006. “Creation and Validation of
Embedded Assertion Statecharts.” In Seventeenth IEEE International Workshop
on Rapid System Prototyping, 2006, 17-23. IEEE. doi:10.1109/RSP.2006.12.

Emmerich, W., S. Bandinelli, L. Lavazza, & J. Arlow. 1996. “Fine grained process
modelling: an experiment at British Airways.” In Proceedings of the Fourth
International Conference on the Software Process, 2-12. IEEE.
d0i:10.1109/ICSP.1996.565016.

Emmerich, W., & V. Gruhn. 1991. “FUNSOFT nets: a Petri-net based software process
modeling language.” In Proceedings of the Sixth International Workshop on
Software Specification and Design, 1991, 175-184. Como, Italy: IEEE.
d0i:10.1109/IWSSD.1991.213063.

Gabbar, Hossam A. 2006. Modern Formal Methods and Applications. Dordrecht:
Springer.

Grady, Jeffrey O. 2009. “Universal Architecture Description Framework.” Systems
Engineering 12 (2): 91-116.

Graham, G. S., & P. J. Denning. 1972. “Protection-principles and Practice.” AFIPS
Conference Proceedings Vol.40, the 1972 Spring Joint Computer Conference:
417; 417-429; 429.

Gruhn, V. 1992. “Software processes are social processes.” In Proceedings of the Fifth
International Workshop on Computer-Aided Software Engineering, 1992., 196—
201. IEEE. d0i:10.1109/CASE.1992.200150.

Gruhn, V., & Ralf Laue. 2007. “What Business Process Modelers Can Learn from
Programmers.” Science of Computer Programming 65 (1) (March): 4-13.
doi:10.1016/j.scico.2006.08.003.

Gruhn, Volker, & Ralf Laue. 2006. “Complexity Metrics for Business Process Models.”
In 9th International Conference on Business Information Systems (BIS 2006),
Volume 85 of Lecture Notes in Informatics, 1-12.

Hall, Anthony. 2005. “Realising the Benefits of Formal Methods.” In Formal Methods
and Software Engineering, ed. Kung-Kiu Lau & Richard Banach, 3785:1-4.
Berlin, Heidelberg: Springer Berlin Heidelberg.
file:///Users/bigschu2/Downloads/citation-1.bib.

135

Harel, David. 1987. “Statecharts: A Visual Formalism for Complex Systems.” Science of
Computer Programming 8 (3) (June): 231-274. doi:10.1016/0167-
6423(87)90035-9.

Hibdon, V.S., & T.C. Hartrum. 1996. “An Air Force Organization Process Model Using
Formal Software Engineering Techniques.” In Proceedings of the National
Aerospace and Electronics Conference, 1996., 2:482-489. Dayton, OH: IEEE.
doi:10.1109/NAECON.1996.517693.

Hoare, C. A. R. 1985. Communicating sequential processes. Englewood Cliffs, N.J.:
Prentice/Hall International.

Hopcroft, John Edward, Rajeev Motwani, & Jeffrey David Ullman. 2007. Introduction to
Automata Theory, Languages, and Computation. Boston, MA: Pearson Addison-
Wesley.

Hurtado Alegria, Julio A., Maria Cecilia Bastarrica, & Alexandre Bergel. 2010. AVISPA:
Localizing Improvement Opportunities in Software Process Models. TR/DCC-
2010-6. University of Chile.

. 2011. “Analyzing Software Process Models with AVISPA.” In Proceedings of
the 2011 International Conference on Software and Systems Process, 23-32. New
York, NY, USA: ACM. doi:10.1145/1987875.1987882.

IAR Systems. 2012. “IAR VisualSTATE.” IAR Systems: IAR VisualSTATE Component
of Embedded Workbench. http://www.iar.com/en/Products/IAR-visualSTATE/.

Karniel, Arie, & Yoram Reich. “Formalizing a Workflow-Net Implementation of Design-
Structure-Matrix-Based Process Planning for New Product Development.” IEEE
Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans
41 (3): 476-491. doi:10.1109/TSMCA.2010.2091954.

Kelley, Dean. 1995. Automata and Formal Languages/ /. an Introduction. Englewood
Cliffs, N.J.: Prentice Hall.

Koehler, J., G. Tirenni, & S. Kumaran. 2002. “From Business Process Model to
Consistent Implementation: a Case for Formal Verification Methods.” In
Proceedings of the Sixth International Enterprise Distributed Object Computing
Conference, 96-106. Lausanne, Switzerland: IEEE.
doi:10.1109/EDOC.2002.1137700.

Lampson, Butler W. 1974. “Protection.” SIGOPS Operating Systems Review 8 (1): 18-
24.

136

Michael, J. B., D. Drusinsky, T. W. Otani, & Man-Tak Shing. 2011. “Verification and
Validation for Trustworthy Software Systems.” IEEE Software 28 (6): 86-92.
doi:10.1109/MS.2011.151.

Monin, Jean Francois, & Michael G Hinchey. 2003. Understanding formal methods.
Springer.

Muelder, Andreas. 2011. “Yakindu.” Yakindu Statechart Modeling Tools.
http://www.yakindu.org/yakindu/.

National Institute of Standards and Technology. 2004. Fips Pub 199: Standards for
Security Categorization of Federal Information and Information Systems.
Gaithersburg, MD: National Institute of Standards and Technology.

Niles, K. 2002. Tribal Knowledge. Vol. 2008. 6/11/2008.

Oxford English Dictionary. 2012a. “‘Coherence, N.”.” Online Dictionary. Oxford English
Dictionary. http://www.oed.com/view/Entry/35933?redirectedFrom=coherence.

. 2012b. “*Oracle, N.”.” Online Dictionary. Oxford English Dictionary.
http://www.oed.com/view/Entry/35933?redirectedFrom=coherence.

Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy, & William
Lorensen. 1991. Object-oriented Modeling and Design. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc.

Ryan, P. Y. A., & S. A. Schneider. 2000. Modelling and Analysis of Security Protocols.
Addison-Wesley Professional.

Schumann, M. 2009. “A Statechart Model of the Cross Domain Implementation
Process.” Information Assurance Technology Analysis Center Newsletter 12 (1)
(February): 26-30.

Schumann, M., & J.B. Michael. 2009. “Statechart Based Formal Modeling of Workflow
Processes.” In Proceedings of the IEEE International Conference on System of
Systems Engineering, 2009, n.p. Albuquerque, NM.

Sindre, G., & A. L. Opdahl. 2000. “Eliciting Security Requirements by Misuse Cases.” In
37th International Conference on Technology of Object-Oriented Languages and
Systems, 2000. TOOLS-Pacific 2000. Proceedings., 120.

Sipser, Michael. 1997. Introduction to the Theory of Computation. Boston: PWS Pub. Co.

Stuit, Marco. 2011. Modelling and analysis of human collaboration processes in
organization. Groningen, Netherlands: University of Groningen(J; University
Library Groningen] [Host].

137

Unified Cross Domain Management Office. 2008. Cross Domain Implementation
Process. Unified Cross-Domain Management Office.

. 2012. *“Unified Cross Domain Management Office Portal”. U.S. Government.
https://www.intelink.gov/sites/UCDMO/Pages/Default.aspx.

Vlissides, John, Ralph Johnson, & Nick Edgar. 2011. “JUnit: A Cook’s Tour.” JUnit A
Cook’s Tour. http://junit.sourceforge.net/doc/cookstour/cookstour.htm.

Webster, Noah, & Jean Lyttleton Mckechnie. 1983. Webster’s New Universal
Unabridged Dictionary. 2nd ed. [S.l.]: Dorset & Baber.

Wong, Peter Y., & Jeremy Gibbons. 2008. “A Process Semantics for BPMN.” In
Proceedings of the 10th International Conference on Formal Methods and
Software Engineering, 355-374. Berlin, Heidelberg: Springer-Verlag.
doi:10.1007/978-3-540-88194-0_22.

Ye, JianHong, ShiXin Sun, Wen Song, and LiJie Wen. 2008. “Formal Semantics of
BPMN Process Models Using YAWL.” In Second International Symposium on
Intelligent Information Technology Application, 2:70-74. Shanghai, China: IEEE.
doi:10.1109/11TA.2008.68.

Yu, Bo, J. Varga, Duminda Wijesekera, Angelos Stavrou, & Anoop Singhal. 2011.
“Specifying Time-Out Points in Surgical EMR Systems.” In Proceedings of the
International Workshop on Health and Social Care Information Systems,
221:165-174. Vilamoura, Algarve, Portugal: Springer Berlin Heidelberg.

Zongyan, Qiu, Peng Liyang, & Yang Hongli. 2010. “A Framework for Integrating
Human Processes with Business Artifacts.” In Fifth International Symposium on
Service Oriented System Engineering (SOSE), 252-259. Nanjing, China: IEEE.
doi:10.1109/SOSE.2010.39.

138

10.

11.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, VA

Dudley Knox Library
Naval Postgraduate School
Monterey, CA

VADM David Buss
United States Fleet Forces Command
Norfolk, VA

RADM (S) Terry Kraft
Navy Warfare Development Center
Norfolk, VA

CAPT Steve Parode
Navy Cyber Warfare Development Group
Suitland, MD

Ms. Rosemary Wenchel
Cyber Capabilities and Operations Support
Washington, DC

Mr. Frank Sinkular
Unified Cross Domain Management Office
Adelphi, MD

CDR Arnie Brown
Unified Cross Domain Management Office
Adelphi, MD

Prof. James Bret Michael
Naval Postgraduate School
Arlington, VA

Prof. Doron Drusinsky
Naval Postgraduate School
Monterey, CA

Prof. George W. Dinolt
Naval Postgraduate School
Monterey, CA

139

12.

13.

14.

15.

16.

Prof. Dan C. Boger
Naval Postgraduate School
Monterey, CA

Prof. Duminda Wijesekera
George Mason University
Fairfax, VA

Professor Man-Tak Shing
Naval Postgraduate School
Monterey, CA

Kathryn Hobbs, CAPT, USN (Ret.)
Commission on Veterans Issues
Olympia, WA

CDR Michael Schumann
Navy Cyber Warfare Development
Suitland, MD

Group

140

	I. INTRODUCTION
	A. STATEMENT OF THE PROBLEM
	B. SIGNIFICANCE OF THE PROBLEM
	C. RESEARCH HYPOTHESIS and approach
	1. Research Hypothesis
	2. Research Approach

	D. CONTRIBUTIONS OF THIS RESEARCH
	1. Software Engineering
	2. Process-modeling Engineering
	3. Case Studies
	4. Real-world Impact

	E. THESIS ORGANIZATION

	II. RELATED RESEARCH
	A. INTRODUCTION
	B. FORMAL METHODS IN PROCESS MODELING
	C. SOFTWARE SAFETY
	D. STATECHARTS
	E. REQUIREMENTS
	F. RESEARCH GAPS

	III. THE MODELING APPROACH
	A. FORMAL METHODS TOOLS AND TECHNIQUES
	1. Desirable Attributes of Formal Methods to Support the Modeling Approach
	2. Assessment of Formal Methods for Desirable Attributes

	B. PROCEDURE
	1. Iterative Design
	2. Terminology
	a. Threads
	b. Transitions
	c. Decision Points
	d. Process Requirements
	e. Timing
	f. Complexity
	g. Layering
	h. Scenario

	C. MODELING APPROACH
	1. Process Selection
	2. Process Analysis
	3. Construct Process Model
	a. Iterative Validation

	4. Construct Statechart Assertions
	a. Statechart Assertions
	b. Validating Statechart Assertions

	5. Embed Assertions in Process Model
	6. V&V Process Model
	a. Validation
	b. Verification – Manual Testing
	c. Verification – Runtime Execution Monitoring

	D. STATEROVER MODELING TOOL
	1. Adding .Jar Files
	2. Setting up the White-box Test Generator
	3. JUnit Testing Framework

	IV. CASE STUDIES
	A. CROSS DOMAIN IMPLEMENTATION PROCESS
	1. Process Selection
	2. Process Analysis
	a. Threads
	b. Decision Points
	c. Layers

	3. Construct Process Model
	4. Construct Statechart Assertions
	a. Validating Statechart Assertions

	5. Embed Assertions in Process Model
	6. V&V Process Model
	a. Validation
	b. Verification – Manual Testing
	c. Verification – Runtime Execution Monitoring

	B. CROSS DOMAIN SOLUTION WORKFLOW PROCESS
	1. Process Selection
	2. Process Analysis
	a. Threads
	b. Decision Points
	c. Layers

	3. Construct Process Model
	4. Construct Statechart assertions
	5. Embed Assertions in Process Model
	6. V&V Process Model
	a. Validation
	b. Verification – Manual Testing
	c. Verification – Runtime Execution Monitoring

	C. KEY LESSONS LEARNED
	1. Code Generation
	2. Source Material

	V. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK
	A. CONCLUSIONS
	1. Software Engineering
	2. Process-modeling Engineering
	3. Case Studies
	4. Real-world Impact

	B. RECOMMENDATIONS FOR FUTURE WORK
	1. Improving Workflows for Surgical Procedures
	2. Runtime Execution Monitoring – Long-term Approach
	3. Full-scale Employment of Embedded Assertions
	4. Validation Using External Assertions
	5. Additional Modeling Tool Capabilities

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

